
ICES REPORT 13-03

February 2013

Isogeometric Collocation: Cost Comparison with Galerkin
Methods and Extension to Adaptive Hierarchical NURBS

Discretizations
by

Dominik Schillinger, John A. Evans, Alessandro Reali, Michael A. Scott, Thomas J.R. Hughes

The Institute for Computational Engineering and Sciences
The University of Texas at Austin
Austin, Texas 78712

Reference: Dominik Schillinger, John A. Evans, Alessandro Reali, Michael A. Scott, Thomas J.R. Hughes,
Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical
NURBS Discretizations, ICES REPORT 13-03, The Institute for Computational Engineering and Sciences, The
University of Texas at Austin, February 2013.

Isogeometric Collocation: Cost Comparison with Galerkin Methods

and Extension to Adaptive Hierarchical NURBS Discretizations

Dominik Schillingera,∗, John A. Evansa, Alessandro Realib,
Michael A. Scottc, Thomas J.R. Hughesa

aInstitute for Computational Engineering and Sciences, The University of Texas at Austin, USA
bDepartment of Civil Engineering and Architecture, University of Pavia, and IMATI-CNR, Pavia, Italy

cDepartment of Civil and Environmental Engineering, Brigham Young University, Provo, USA

Abstract

We compare isogeometric collocation with isogeometric Galerkin and standard C0 finite

element methods with respect to the cost of forming the matrix and residual vector, the

cost of direct and iterative solvers, the accuracy versus degrees of freedom and the accu-

racy versus computing time. On this basis, we show that isogeometric collocation has the

potential to increase the computational efficiency of isogeometric analysis and to outper-

form both isogeometric Galerkin and standard C0 finite element methods, when a specified

level of accuracy is to be achieved with minimum computational cost. We then explore an

adaptive isogeometric collocation method that is based on local hierarchical refinement of

NURBS basis functions and collocation points derived from the corresponding multi-level

Greville abscissae. We introduce the concept of weighted collocation that can be consistently

developed from the weighted residual form and the two-scale relation of B-splines. Using

weighted collocation in the transition regions between hierarchical levels, we are able to

reliably handle coincident collocation points that naturally occur for multi-level Greville ab-

scissae. The resulting method combines the favorable properties of isogeometric collocation

and hierarchical refinement in terms of computational efficiency, local adaptivity, robustness

and straightforward implementation, which we illustrate by numerical examples in one, two

and three dimensions.

Keywords: Isogeometric analysis, isogeometric collocation methods, hierarchical
refinement of NURBS, weighted collocation, reduced quadrature, local adaptivity

∗Corresponding author;
Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East
24th Street, Austin, TX 78712, USA; Phone: +1 512-232-7767; Fax: +1 512-232-7508; E-mail: do-
minik@ices.utexas.edu

Preprint submitted to Computer Methods in Applied Mechanics and Engineering May 16, 2013

Contents

1 Introduction 4
1.1 Is isogeometric collocation a game changer? 5
1.2 How does isogeometric collocation perform with respect to Galerkin methods? 6
1.3 Local adaptivity in isogeometric collocation with hierarchical refinement of

NURBS . 7
1.4 Structure and organization of the paper . 8

2 NURBS-based isogeometric collocation 8
2.1 B-spline and NURBS basis functions . 8

2.1.1 Univariate B-splines . 8
2.1.2 Multivariate B-splines . 9
2.1.3 Non-uniform rational B-splines . 11

2.2 The variational background of collocation . 11
2.2.1 The method of weighted residuals . 12
2.2.2 Collocation . 13
2.2.3 Galerkin . 14

2.3 Isogeometric collocation . 16

3 Comparison of isogeometric collocation with isogeometric Galerkin and
C0 finite element methods in terms of computational efficiency 18
3.1 Cost for the formation and assembly of stiffness matrices and residual vectors 18

3.1.1 Number of quadrature/collocation points 20
3.1.2 Cost of formation and assembly at one quadrature/collocation point . 21
3.1.3 Elasticity: Cost for formation and assembly of the global stiffness matrix 24
3.1.4 Elastodynamics: Cost for an explicit time step 25

3.2 Cost of direct and iterative solvers . 27
3.2.1 Bandwidth . 29
3.2.2 Cost of matrix-vector products . 31

3.3 Cost vs. accuracy . 32
3.3.1 A set of scalar and vector problems with smooth and “rough” solutions 32
3.3.2 Theoretical analysis of isogeometric collocation 40
3.3.3 Accuracy vs. the number of degrees of freedom 45
3.3.4 Accuracy vs. computing time . 46
3.3.5 From operation counts to computing times on modern multi-core ma-

chines . 47
3.4 A few rules of thumb . 48

4 Hierarchical refinement of NURBS 50
4.1 Refinability of B-spline basis functions by subdivision 50
4.2 Construction of adaptive hierarchical approximation spaces 53

4.2.1 Two-level hierarchical refinement for one element 53

2

4.2.2 Two-level hierarchical refinement for several elements 54
4.2.3 Multi-level hierarchical refinement . 55
4.2.4 Recovering linear independence . 55

4.3 Generalization to multiple dimensions . 55
4.4 Generalization to NURBS . 57
4.5 Efficient implementation of hierarchical refinement 57

5 The concept of weighted isogeometric collocation 58
5.1 Motivation . 59
5.2 Variational background . 59
5.3 Collocating at the fine-scale Greville abscissae 62
5.4 A simple model problem in 1D . 63

6 Adaptive isogeometric collocation in one dimension 65
6.1 Standard and weighted collocation across a hierarchy of meshes 66
6.2 Truncation of weighted collocation points . 67
6.3 A simple model problem in 1D revisited . 69
6.4 Computational efficiency in 1D . 71

7 Adaptive isogeometric collocation in two and three dimensions 72
7.1 Annular ring with a smooth solution . 72
7.2 L-shaped domain with a “rough” solution . 74
7.3 Advection skew to the mesh . 76
7.4 Advection-diffusion in a rotating cylinder . 79
7.5 Computational efficiency in higher dimensions 80

8 Summary and conclusions 84

Appendix A Derivation of operation counts at a quadrature/collocation
point 87
Appendix A.1 Flops to evaluate basis functions 92
Appendix A.2 Flops to evaluate the local stiffness matrix in the Laplace problem 94
Appendix A.3 Flops to evaluate the local stiffness matrix in elasticity 95
Appendix A.4 Flops to evaluate the local residual vector in elastodynamics . . 96

Appendix B Point upwinding in isogeometric collocation 98

3

1. Introduction

Isogeometric analysis (IGA) was introduced by Hughes and coworkers [1, 2] to bridge the

gap between computer aided geometric design (CAGD) and finite element analysis (FEA).

The core idea of IGA is to use the same smooth and higher-order basis functions, e.g. non-

uniform rational B-splines (NURBS) or T-splines, for the representation of both geometry

in CAGD and the approximation of solutions fields in FEA. The primary goal of IGA is

to simplify the cost-intensive mesh generation process required for standard FEA and to

support a more tightly connected interaction between CAGD and FEA tools [3–5]. In ad-

dition and perhaps even more important, IGA turned out to be a superior computational

mechanics technology, which on a per-degree-of-freedom basis exhibits increased accuracy

and robustness in comparison to standard finite element methods (FEM) [6, 7]. Of partic-

ular importance in this respect is the observation that, unlike standard FEM, the higher

modes of IGA basis functions do not diverge with increasing degree, but achieve almost

spectral accuracy that improves with degree [8, 9]. IGA has been successfully applied in a

variety of areas, such as structural vibrations [2, 8], incompressibility [10, 11], shells [12–15],

fluid-structure interaction [16–18], turbulence [19, 20], phase field analysis [21–24], contact

mechanics [25–28], shape optimization [29, 30], immersed boundary methods [31–36] and

boundary element analysis [37, 38].

Beyond their favorable approximation properties, the technical aspects of smooth higher-

order basis functions raise the question of their efficient implementation. The integration of

IGA capabilities into existing standard FEM codes was recently simplified by the concept

of Bézier extraction for NURBS [39] and T-splines [40, 41]. The development of suitable

direct and iterative solvers has been recently initiated on shared [42, 43] and distributed

architectures [44]. Furthermore, the study of preconditioners and multigrid techniques for

IGA has been started in [45–47] and [48], respectively. A further important issue is computa-

tionally efficient quadrature rules that achieve exact integration of system matrices with the

smallest possible number of quadrature points. In Galerkin-type formulations, element-wise

Gauss quadrature is optimal for standard FEM, but sub-optimal for IGA, since it ignores

the inter-element continuity of its smooth basis functions. Taking into account the smooth-

ness across element boundaries, a number of more efficient quadrature rules with reduced

sets of quadrature points were recently developed by Hughes et al. [49, 50]. Motivated by

their work on quadrature, they also initiated research on isogeometric collocation methods

[51, 52], which can be interpreted as a one-point quadrature rule in the IGA context.

4

1.1. Is isogeometric collocation a game changer?

In contrast to Galerkin-type formulations, collocation is based on the discretization of

the strong form of the underlying partial differential equations (PDE), which requires basis

functions of sufficiently high order and smoothness. Consequently, the use of IGA for col-

location suggests itself, since spline functions such as NURBS or T-splines can be readily

adjusted to any order of polynomial degree and continuity required by the differential oper-

ators at hand. Furthermore, they can be generated for domains of arbitrary geometric and

topological complexity, directly linked to and fully supported by CAGD technology. The

major advantage of isogeometric collocation over Galerkin-type methods is the minimization

of the computational effort with respect to quadrature, since for each degree of freedom only

one point evaluation at a so-called collocation point is required. This exceptional property

constitutes a significant advantage of isogeometric collocation for applications where the

efficiency and success of an analysis technology is directly related to the cost of quadrature.

Furthermore, the bandwidth and non-zero population within the band are significantly re-

duced compared with a Galerkin method. This improves the performance of both direct and

iterative equation solvers as well.

The most salient example of an application whose speed is almost entirely dependent

on the cost of quadrature is explicit structural dynamics, where the computational cost is

dominated by stress divergence evaluations at quadrature points for the calculation of the

residual force vector. Codes used extensively for crash dynamics and metal forming, such as

LS-DYNA, rely almost exclusively on low-order quadrilateral and hexahedral elements with

one-point quadrature. This minimizes memory requirements and the number of constitutive

evaluations and thus allows for the efficient computation of very large industrial problems

with standard hardware in a reasonable time. However, one-point quadrature leads to rank

deficient system matrices, which in turn induces mesh instabilities, e.g. “hourglass modes”

[53]. Therefore, an additional stabilization by artificial viscous and/or elastic mechanisms

becomes necessary, whose parameters usually require fine-tuning by computationally expen-

sive and time-consuming sensitivity studies. Isogeometric collocation can be viewed as a

one-point quadrature scheme that is rank sufficient. It provides the same advantages as

standard techniques in terms of memory and computational efficiency, but, in addition, is

free of mesh instabilities. Hence, IGA collocation methods eliminate the need for ad hoc

hourglass stabilization techniques and their tuning parameters. Furthermore, they show

great promise for the development of higher-order accurate time integration schemes due to

the convergence of the high modes in the eigenspectrum [52] as well as for the development

5

of locking free beam, plate and shell elements [54, 55].

A further promising example is computational fluid dynamics (CFD). Over the last two

decades, B-spline basis functions have been successfully used in the analysis of Navier-Stokes

problems, in particular wall-bounded turbulent flows [19, 20, 56–59]. Due to their maximum

smoothness, B-splines exhibit a high resolution power, which allows the representation of

a broad range of scales of a turbulent flow. This eliminates the need to construct separate

boundary schemes and leads to enhanced numerical results in comparison to other CFD

approaches. For incompressible flows, divergence-conforming tensor-product B-splines are

capable of exactly satisfying the incompressibility constraint a priori [60–62]. However,

simulations based on Galerkin discretizations with B-splines are dominated by the high cost

of quadrature. The evaluation of the nonlinear convection terms alone usually consumes

more than 50% of the total analysis time [60]. B-spline collocation has been proposed and

examined in several studies as an economical alternative that fully inherits the advantages of

B-spline discretizations, but requires only a fraction of the computational time and memory

due to the minimization of point evaluations [63–67]. Unfortunately, these studies seem to

have sparked little interest in the CFD community so far, most probably since they have

been limited to very simple geometries and because an efficient technology to incorporate

more complex geometries has been missing. We believe that this gap can be ideally filled

by isogeometric collocation methods, which are capable of naturally incorporating complex

geometries based on CAGD technology. In our opinion, and based on the promising results

of [64–66], isogeometric collocation opens the door for an efficient higher-oder accurate and

robust CFD analysis technology that works with a minimum number of quadrature points

and fully embraces the geometric capabilities of IGA.

1.2. How does isogeometric collocation perform with respect to Galerkin methods?

To shed light on this essential question, the present paper will first compare isogeometric

collocation (IGA-C) with isogeometric Galerkin (IGA-G) and standard C0 finite element

methods (FEA-G) in terms of their computational cost and efficiency. Aiming at a broad

and complete picture, we highlight three different aspects: First, we assess the computa-

tional cost for forming and assembling discrete systems that emerge from IGA-C, IGA-G

and FEA-G. We consider both stiffness matrices and residual vectors, taking into account

the total number of quadrature/collocation points as well as the floating point operations

required to evaluate a collocation and a quadrature point in different problem classes. The

operation counts demonstrate that, compared with the Galerkin methods, IGA-C consider-

ably reduces the computing cost. Second, we examine key indicators, such as bandwidth and

6

cost of matrix-vector products, to characterize the efficiency of direct and iterative solvers.

They consistently indicate a superior solver performance for IGA-C over IGA-G. Third, we

quantify the cost of IGA-C, IGA-G and FEA-G to solve a series of representative bench-

mark problems in 3D, considering different combinations of smooth and “rough” solutions

for scalar and vector fields. We compare the different methods with respect to accuracy vs.

the number of degrees of freedom as well as accuracy vs. the total computing time. With

respect to the number of degrees of freedom, IGA-G is several orders of magnitude more

accurate than IGA-C and FEA-G. With respect to accuracy vs. computing time, IGA-C

is superior to both IGA-G and FEA-G. The latter manifests the potential of isogeometric

collocation as a fast and accurate IGA technology.

1.3. Local adaptivity in isogeometric collocation with hierarchical refinement of NURBS

In the second part of the paper, we explore the use of hierarchically refined NURBS basis

functions for isogeometric collocation. Hierarchical refinement of NURBS has recently gained

increasing attention as a viable pathway to local refinement of NURBS parameterizations for

use in IGA [68–72]. The technology relies on the principle of B-spline subdivision [73, 74],

which makes it possible to reliably control linear independence throughout the refinement

process. In addition, the maximum smoothness of NURBS is maintained, which is essential

for use in collocation. Since hierarchical B-splines rely on a local tensor product structure,

they can be easily generalized to arbitrary dimensions and facilitate automation of the

refinement process [70, 72]. A hierarchical organization of a basis can be directly transferred

into tree data structures [75–77], which allow for a straightforward implementation with

manageable coding effort.

However, at first sight, using a hierarchically refined NURBS basis in collocation seems

not straightforward, since collocation points derived from the Greville abscissae of different

hierarchical levels are generally not distinct, which is necessary for the linear independence

of the system matrix. To overcome this problem, we introduce the concept of weighted collo-

cation for NURBS basis functions. Instead of generating each discrete collocation equation

from the evaluation of the PDE at a single collocation point, we use a weighted average

of PDE evaluations taken at several collocation points. Weighted IGA collocation can be

consistently derived from the two-scale relation of B-spline subdivision and allows the pres-

ence of coincident collocation points. To preserve the core advantage of a minimum number

of point evaluations, we restrict the use of weighted collocation to the transition regions,

where NURBS basis functions of different hierarchical levels overlap, and continue to col-

locate at single Greville abscissae in the rest of the domain, where coincident collocation

7

points cannot occur. A further simplification of the method can be achieved by exploiting

the idea of truncated hierarchical NURBS [70, 78] in the transition regions. The validity and

effectiveness of the resulting adaptive IGA collocation scheme is illustrated by a number of

numerical examples in one, two and three dimensions. In particular, we demonstrate that,

if we use the weighting scheme locally, the ratio between the number of collocation points

and the number of degrees of freedom always remains close to one.

1.4. Structure and organization of the paper

The present work is organized as follows: Section 2 provides a brief review of NURBS

based isogeometric analysis and the derivation of IGA collocation from the method of

weighted residuals. Section 3 presents the comparative study that discusses various as-

pects related to the computational efficiency of IGA-C, IGA-G and FEA-G. Section 4 gives

a brief introduction to hierarchical refinement of NURBS basis functions. Section 5 in-

troduces the concept of weighted isogeometric collocation. Section 6 derives the adaptive

isogeometric collocation method, combining the advantages of standard IGA collocation,

weighted collocation and hierarchical refinement. Section 7 presents a range of numerical

examples, illustrating the effectiveness of adaptive IGA collocation. Section 8 summarizes

our most important points and motivates future research in IGA collocation.

2. NURBS-based isogeometric collocation

We start with a concise introduction to isogeometric collocation methods in the spirit of

[51, 52]. After a brief review of B-spline and NURBS basis function technology, we derive the

discrete collocation equations, following the method of weighted residuals. We clarify the

main features of collocation by comparison with the well-known Galerkin method. Finally,

we summarize some key technical aspects of isogeometric collocation.

2.1. B-spline and NURBS basis functions

In the following, we outline some technical aspects of B-spline and NURBS bases for

IGA. Readers interested in more details are referred to Piegl and Tiller [79], Cohen et al.

[80], Rogers [81] or Farin [82], who provide in-depth reviews of the underlying geometric

concepts and algorithms.

2.1.1. Univariate B-splines

A B-spline basis of degree p is formed from a sequence of knots called a knot vector

Ξ = {ξ1, ξ2, . . . , ξn+p+1}, where ξ1 ≤ ξ2 ≤ . . . ≤ ξn+p+1 and ξi ∈ R is called a knot. A

8

univariate B-spline basis function Ni,p(ξ) is defined using a recurrence relation, starting

with the piecewise constant (p = 0) basis function

Ni,0 (ξ) =







1, if ξi ≤ ξ ≤ ξi+1

0, otherwise
(1)

For p > 0, the basis function is defined using the Cox-de Boor recursion formula

Ni,p (ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) (2)

where we respect the convention 0/0 = 0.

If a knot has multiplicity k, the smoothness of the B-spline basis is Cp−k at that lo-

cation. Fig. 1a illustrates a B-spline basis of polynomial degree p = 3 and knot vector

Ξ = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}, where knots at the beginning and the end are repeated p+1

times to make the basis interpolatory (in this case, the knot vector is said to be open).

Having constructed the corresponding basis functions, we can build a B-spline curve in

ds dimensions by a linear combination of basis functions

C(ξ) =
n
∑

i=1

P i Ni,p(ξ) (3)

where coefficients P i ∈ R
ds are called control points. Piecewise linear interpolation of the

control points defines the control polygon. An example generated from the B-spline basis

shown in Fig. 1a is provided in Fig. 1b. Note that the curve is of continuity class C2.

2.1.2. Multivariate B-splines

Multivariate B-splines are a tensor product generalization of univariate B-splines. We

use ds and dp to denote the dimension of the physical and parameter spaces, respectively.

Multivariate B-spline basis functions are generated from dp univariate knot vectors

Ξℓ = {ξℓ1, ξ
ℓ
2, ..., ξ

ℓ
nℓ+pℓ+1} (4)

where ℓ = 1, . . . , dp, pℓ indicates the polynomial degree along parametric direction ℓ, and nℓ

is the associated number of basis functions. The resulting univariate B-spline basis functions

in each direction ℓ can then be denoted by N ℓ
iℓ,pℓ

, from which multivariate basis functions

9

0,0,0,0 1 2 3 4,4,4,4

0.0

0.5

1.0 N1,3
N2,3

N3,3
N4,3 N5,3 N6,3

N7,3

(a) Cubic B-spline patch with interpolatory ends.

P2 P3

P4 P5

P6

P7

P1

(b) B-spline curve generated from the above basis using control points P i.

Figure 1: Example of cubic B-spline basis functions and a corresponding B-spline curve in 2D.

Bi,p(ξ) can be constructed as

Bi,p (ξ) =

dp
∏

ℓ=1

N ℓ
iℓ,pℓ

(ξℓ) (5)

Multi-index i = {i1, . . . , idp} denotes the position in the tensor product structure, p =

{p1, . . . , pdp} indicates the polynomial degree, and ξ = {ξ1, . . . , ξdp} are the parametric

coordinates in each parametric direction ℓ. A bivariate parametric space and B-spline basis

function are shown in Figs. 2a and 2b, respectively. B-spline surfaces (dp = 2) and solids

(dp = 3) are a linear combination of multivariate B-spline basis functions and control points

in the form

S(ξ) =
∑

i

P i Bi,p (ξ) (6)

where the sum is taken over all combinations of multi-index i. In the multivariate case, the

control points P i ∈ R
ds form the so-called control mesh.

10

0,0,0,0
0,0,0,0

11

22

33

4,4,4,4 4,4,4,4

ξη

(a) Tensor product structure of open
knot vectors in the parameter space.

(b) Bicubic basis function generated
from Ξ={0, 1, 2, 3, 4} in ξ- and η-
directions.

Figure 2: Bivariate cubic knot spans and a corresponding uniform B-spline basis function.

2.1.3. Non-uniform rational B-splines

NURBS can be obtained through a projective transformation of a corresponding B-spline

in R
ds+1. Univariate NURBS basis functions Ri,p(ξ) are given by

Ri,p (ξ) =
wiNi,p(ξ)

∑n

j=1wjNj,p(ξ)
(7)

where Ni,p(ξ) are polynomial B-spline basis functions and wi are weights. Multivariate

NURBS basis functions are formed as

Ri,p (ξ) =
wiBi,p(ξ)

∑

j wjBj,p(ξ)
(8)

NURBS curves, surfaces and solids are then defined as

S(ξ) =
∑

i

P i Ri,p (ξ) (9)

Suitable control points and weights for arbitrarily complex geometries can be derived with

and exported from CAGD tools such as Rhino [4, 83].

2.2. The variational background of collocation

The collocation method can be considered as a member of the family of numerical schemes

based on the method of weighted residuals [2, 84–87]. In what follows, we focus on the

boundary value problem associated with steady advective-diffusive transport, defined in

11

strong form as

L (u) ≡ a · ∇u−∇ · (D∇u) = f in Ω (10a)

u = uD on ΓD (10b)

n ·D∇u = h on ΓN (10c)

where L denotes the advection-diffusion operator, u(x) is the scalar unknown, a is the

velocity, D is the diffusion coefficient and f is a source term. The function uD specifies the

solution of u on the Dirichlet boundary ΓD, while function h specifies the normal diffusive

flux on the Neumann boundary ΓN . The unit outward normal along Γ is denoted by n.

The principles outlined in the following equivalently apply to other PDE systems as well,

e.g. elasticity [52].

2.2.1. The method of weighted residuals

The method of weighted residuals (MWR) considers approximations u∗ to the exact

solution u of the form

u∗ = ũD(x) +
n
∑

i=1

Ni(x) ci (11)

The function ũD in Eq. (11) is viewed as an extension of the prescribed boundary condi-

tion, that is, it is defined on Ω and satisfies the Dirichlet boundary condition Eq. (10b)

when evaluated on ΓD. The remainder of Eq. (11) is chosen from a n-dimensional finite

subspace Sn = span(N1(x), ..., Nn(x)), spanned by the linearly independent basis functions

Ni, and exactly satisfies the zero Dirichlet boundary a priori. The corresponding unknown

coefficients ci are determined in such a way that the residuals, which are obtained by the

substitution of u∗ into Eqs. (10a) and (10c), are zero in an average sense as follows

∫

Ω

(L (u∗)− f) ωΩ dΩ +

∫

ΓN

(n ·D∇u∗ − h) ωΓ dΓ = 0 (12)

Functions ωΩ(x) and ωΓ(x) are test functions that are defined over the domain Ω and the

Neumann boundary ΓN , respectively. Note that we do not need to consider the residual that

emanates from Eq. (10b), since Dirichlet boundary conditions are exactly satisfied a priori

by Eq. (11). Equation (12) constitutes the weighted-residual or weak form of the boundary

value problem Eqs. (10).

12

2.2.2. Collocation

In the collocation method, test functions ωΩ(x) and ωΓ(x) are selected as two sets of

Dirac δ functions, which can be formally constructed as the limit of a sequence of smooth

functions with compact support that converge to a distribution [51, 52], satisfying the so-

called sifting property
∫

Ω

gΩ(x) δΩ(x− xi) dΩ = gΩ(xi) (13)

∫

Γ

gΓ(x) δΓ(x− xi) dΓ = gΓ(xi) (14)

provided that gΩ is a continuous function about the point xi ∈ Ω and gΓ is a continuous

function on the boundary about the point xi ∈ Γ.

In collocation, the Dirac δ test functions are defined at k interior points in Ω with

coordinates xi, i = 1, . . . , k, and n − k boundary points on ΓN with coordinates xi, i =

k + 1, . . . , n, and read

ωΩ =
k
∑

i=1

δΩ(x− xi) ĉi (15)

ωΓ =
n
∑

i=k+1

δΓ(x− xi) ĉi (16)

where n denotes the total number of basis functions. The locations of the Dirac δ functions

are called collocation points and are illustrated in Fig. 3a. Substitution of Eqs. (15) and

(16) into the weak form Eq. (12) yields

k
∑

i=1

ĉi

(

L
[

ũD(xi)+
k
∑

j=1

Nj(xi) cj
]

−f(xi)
)

+
n
∑

i=k+1

ĉi

(

ni·D
n
∑

j=k+1

∇Nj(xi) cj −h(xi)
)

= 0

(17)

In this step, the integrals are naturally eliminated due to the sifting property, Eqs. (13) and

(14), of the Dirac δ test functions. Collocation thus amounts to satisfying the strong form

of the residual at the collocation points.

Since coefficients ĉi are arbitrary, Eq. (17) yields a system of linear algebraic equations

with unknowns cj. The elements of the system matrix K and load vector F are defined as

Kij =

{

L

(

Nj(xi)
)

, for 1 ≤ i ≤ k

ni ·D∇Nj(xi), for k + 1 ≤ i ≤ n
(18)

13

Outward normal vectors n

1

2

k-1

k
k+1

n

n-1 3

Interior collocation points (enforce PDE)

Boundary collocation point (enforce flux condition)

Γ

Ω

D

Γ
N

i

(a) Regular collocation points in a domain
described by a single patch.

Interface collocation point at patch boundary

Collocation point of reduced boundary regularity

Ω
2

Ω
1

Normals of fluxes to be averaged at each point

(b) Special collocation points in a geometry
composed of multiple patches with corners.

Figure 3: IGA collocation: Schematic outline of different collocation points.

Fi =

{

−L

(

ũD(xi)
)

+ f(xi), for 1 ≤ i ≤ k

− ni ·D∇uD(xi) + h(xi), for k + 1 ≤ i ≤ n
(19)

The system can be solved for the unknown coefficients cj, which define the approximation

u∗ of Eq. (11). It should be noted that the system matrix of Eq. (18) is generally not

symmetric.

Due to the evaluation of the differential operators of the PDE, collocation requires basis

functions Ni with certain smoothness properties, so that higher derivatives are well-defined

in the vicinity of each collocation point. In our numerical examples, we need to evaluate

the second-order advection-diffusion operator L of Eq. (10), so that basis functions are

required, which are at least C2 at all interior collocation points and at least C1 on the

Neumann boundary. We note that there are many forms and instantiations of collocation

methods, e.g. subdomain collocation [84, 87, 88], radial boundary collocation [89–91], or

meshfree point collocation methods [92, 93].

2.2.3. Galerkin

To clarify the variational concept of collocation, it is instructive to compare it with the

derivation of the Galerkin method [2, 87, 94, 95]. The Galerkin method adopts the same

formal approximation u∗ of the solution, i.e. Eq. (11). In contrast to (point) collocation,

which uses a set of Dirac δ functions, the Galerkin method chooses test functions ωΩ and

ωΓ, which are zero at ΓD, but can otherwise be represented by the same basis functions as

14

the approximation of the solution in Eq. (11)

ωΩ = ωΓ =
n
∑

i=1

Ni(x) ĉi (20)

The Galerkin solution is thus determined by forcing the residual to be orthogonal to each

basis function ωi in the following sense

∫

Ω

(

L
[

u∗(x)
]

− f(x)
)

ωi dΩ +

∫

ΓN

(

n ·D∇u∗(x) − h(x)
)

ωi dΓ = 0 (21)

This form still requires at least C1-continuous basis functions or additional terms that handle

the jumps in the derivatives of C0-continuous basis functions. Applying integration by

parts and the divergence theorem to the diffusion term, we obtain the standard well-known

variational formulation of the Galerkin method [96], which is valid for C0-continuous basis

functions. The components of the system matrix Kij and the load vector Fi are derived as

Kij =

∫

Ω

Ni

(

a · ∇Nj

)

dΩ +

∫

Ω

∇Ni ·
(

D∇Nj

)

dΩ (22)

Fi =

∫

Ω

Nif dΩ +

∫

ΓN

Nih dΓ (23)

A comparison with the corresponding terms of the collocation method in Eq. (18) and

(19) reveals two major technical differences between the two methods. First, due to integra-

tion by parts in Eq. (21), Galerkin reduces the minimum continuity required by the basis

functions Ni to C0, which opens the door to standard C0-continuous FEA technology. In

collocation, however, the required smoothness corresponds to the highest differential opera-

tor in the strong form of the PDE, which calls for a minimum continuity of C2 in the present

case. Note that C1 is sufficient for collocation points that are not located at the knots.

Second, due to the finite support of the Galerkin test functions, integrals are not elimi-

nated from the discretized variational statement as they are in the collocation method due to

the sifting property of the Dirac δ test functions. This requires their evaluation by numerical

quadrature rules of the form

∫

Ω

g(x) dΩ =
∑

k

g(xk)wk (24)

which replace the continuous integral by several point evaluations multiplied by correspond-

15

ing weights wk in each element. Consequently, the computational effort of evaluating the

Galerkin matrix and load vector is considerably increased as compared to collocation, which

operates with the optimum of only one point evaluation for each basis function Ni.

2.3. Isogeometric collocation

Isogeometric collocation emanates from the combination of isogeometric basis function

technology and the collocation method as described in Sections 2.1 and 2.2, respectively.

Since smooth B-splines and NURBS naturally comply with the continuity requirements of

collocation, the use of IGA in a collocation framework suggests itself. Beyond the essential

property of smoothness, IGA basis functions come with an apparatus of optimized algorithms

that allow for a highly formalized and efficient implementation and can handle very complex

geometries [79, 81, 82]. The collocation method brings to the table its robustness and

computational efficiency in terms of a minimum of point evaluations. In the following, we

briefly summarize the key technical aspects of IGA collocation:

• Collocation at Greville abscissae: The success of a collocation method predominantly

relies on the choice of suitable collocation points. In the framework of B-spline based

collocation methods, different sets of points have been proposed that lead to collocation

schemes with different stability and convergence properties. Examples are orthogonal

collocation on Gauss-type quadrature points [63, 97], the maxima of spline basis func-

tions [64, 98], and the Demko points [51, 99]. In the present study, we use the Greville

abscissae, which are reported to be a very good choice from a practical engineering

point of view [51, 52, 66, 98]. Collocation points based on the Greville abscissae have

been shown to provide the best possible rates of convergence, while they have been

found to be unstable only for very unusual cases [51, 52]. A Greville abscissa in 1D

can be easily computed from a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1} as

ξ̂i =
ξi+1 + . . .+ ξi+p

p
, i = 1, . . . , n (25)

where n denotes the number of basis functions in the patch. Equation (25) automati-

cally produces the optimal number of points, so that each point can be associated with

one particular basis function. Furthermore, favorable properties also hold for higher

dimensional patches, for which Greville points can be easily generated by taking the

tensor product of the 1D Greville abscissae of each parametric direction.

16

• Imposition of boundary conditions: Boundary conditions directly follow from the vari-

ational formulation derived in Section 2.2. Dirichlet boundary conditions are satisfied

strongly by incorporating them into the approximation u∗ of Eq. (11). Therefore, Gre-

ville points located on ΓD do not need to be taken into account. Neumann boundary

conditions are imposed by the evaluation of the normal diffusive flux at the n − k

boundary collocation points on ΓN , see Fig. 3a and Eqs. (17) to (19).

• Multi-patch geometries: Geometric parameterizations in CAGD are often composed

of several conforming NURBS patches, where the smoothness of basis functions is

reduced to C0 along patch interfaces. C0 continuity is the physically appropriate

condition at material interfaces. It is shown in [52] that IGA collocation can handle

multi-patch parameterizations by introducing Neumann-type flux conditions for col-

location points on the interface, which can be handled in the same way as Neumann

boundary conditions (see Fig. 3b). This allows the collocation equations of each patch

to be constructed individually, and the global system can be completed by simply

summing up the equations associated with interface collocation points shared by mul-

tiple patches. Neumann-type interface conditions for different multi-patch scenarios

are tabulated in [52].

• Reduced regularity of the geometric boundary: The evaluation of flux conditions at

boundary and interface collocation points involve a well-defined normal vector n, which

requires a regular boundary curve that is at least C1. It is shown in [52] that collocation

points that lie on boundary locations of reduced regularity such as corners or sharp

edges can be treated as follows: The flux condition is evaluated several times for all

normal vectors that are well-defined in the neighborhood of the critical collocation

point. The final contribution to the system matrix is simply their average (see also

Fig. 3b). Averaging rules for different irregular points are tabulated in [52].

Readers interested in a more detailed presentation and the theoretical background of

these issues are referred to the fundamental contributions in [51, 52].

17

3. Comparison of isogeometric collocation with isogeometric Galerkin and C0

finite element methods in terms of computational efficiency

In the following, we provide an extensive comparison of isogeometric collocation (IGA-C)

with isogeometric Galerkin (IGA-G) and standard C0 finite element methods (FEA-G) in

terms of their computational efficiency. In this section, we will quantify the efficiency of

a method by estimating the computational cost of its main algorithms that we measure in

terms of the number of floating point operations (flops) involved as well as by computing

times measured with our codes. When looking at flops, we adopt the corresponding operation

counts as a suitable indicator of the actual computing time. The present section will focus on

three main aspects: (a) Cost for the formation and assembly of stiffness matrices and residual

vectors; (b) cost for the direct and iterative solution of systems of algebraic equations; and (c)

accuracy in error norms vs. the total number of degrees of freedom as well as vs. the total

computing time that includes formation/assembly, preconditioning and iterative solution.

The results demonstrate the potential of IGA-C to achieve a specified level of accuracy with

a computational effort that is orders of magnitude smaller than for IGA-G and FEA-G.

3.1. Cost for the formation and assembly of stiffness matrices and residual vectors

The cost required for the formation and assembly of stiffness matrices and residual vectors

is governed by the number of quadrature/collocation points and the algorithmic operations

required at each of these points. We consider model discretizations in one, two and three

dimensions that are characterized by the polynomial degree p of the basis functions and the

number of elements n in each parametric direction. For the sake of clarity and simplicity, we

assume throughout this section that the model discretizations in 2D and 3D have the same

number of elements n in each parametric direction. The spatial dimension of the model

discretizations will be denoted by parameter d. We refer to the domains delineated by knot

spans as Bézier elements, or knot span elements, or simply as elements. These terms are

used synonymously. We also note that this terminology is consistent with the usual notion

of a finite element in which case the (typically C0) element boundaries are the knots, thus

pertaining to spline-based methods as well as traditional finite element methods. For IGA-G

and IGA-C, we employ Cp−1-continuous NURBS basis functions defined by a single patch

[1, 2]. For FEA-G, we use elements based on Bernstein polynomials [39, 82, 100]. We note

that many of our results and conclusions equivalently hold for other C0 approximations, such

as basis functions based on Lagrange [96] or integrated Legendre polynomials [101], since

their functions have the same support and span the same space as Bernstein polynomials. It

18

IGA-C IGA-G (Gauss) IGA-G (optimal) FEA-G

Total # (n+ p)d nd(p+ 1)d (n+ 1)d(p/2 + 1)d nd(p+ 1)d

per basis
function

(n+ p)d

(n+ p)d
= 1

nd(p+ 1)d

(n+ p)d
(n+ 1)d(p/2 + 1)d

(n+ p)d
nd(p+ 1)d

(np+ 1)d

per basis func-
tion as n ≫ p

1 (p+ 1)d (p/2 + 1)d
(

p+1

p

)d

≈ 1

Table 1: Number of quadrature/collocation points in the model discretizations.

should be kept in mind that each element of a C0-continuous discretization introduces more

independent degrees of freedom than a corresponding knot span element of a Cp−1-continuous

NURBS discretization. To avoid a potential bias, we will mostly consider operation counts

per basis function or per degree of freedom.

In IGA-C, the cost of formation and assembly is dominated by the evaluation of inte-

rior collocation points, since the number of points in the interior of a spline patch is one

order of magnitude larger than the number of boundary points on the Neumann bound-

ary. In addition, the computation of interior points is more expensive, since it involves

second derivatives. For the sake of simplicity and clarity, we assume in our counts that each

collocation point is an interior point.

2 4 6 8 10 12 14 16 18 20
100

101

102

FEA-G
IGA-G (Gauss)

1D

2D

3D

3D

2D

1D

IGA-C

elements n per parametric direction

#
 p

o
in

t
ev

al
u

at
io

n
s

/
#

 b
as

is
 f

u
n

ct
io

n
s

Polyn. degree p=3

(a) Constant polynomial degree p=3, increas-
ing number of elements n.

2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

IGA-G (Gauss)

1D

2D
3D

3D

2D

1D

IGA-C

Polynomial degree p

#
 p

o
in

t
ev

al
u

at
io

n
s

/
#

 b
as

is
 f

u
n

ct
io

n
s

FEA-G

n=20 elements per

parametric direction

(b) Constant number of elements n=20, in-
creasing polynomial degree p.

Figure 4: Number of quadrature points per basis function in 1D, 2D and 3D. The curves for IGA-G
can be reduced by factor 1/2d by using the improved quadrature rules of [50].

19

d IGA-C IGA-G FEA-G

1 35(p+ 1) + 2 2(p+ 1)2 + 14(p+ 1) 2(p+ 1)2 + 4(p+ 1)
2 125(p+ 1)2 + 37 4(p+ 1)4 + 35(p+ 1)2 + 4 4(p+ 1)4 + 18(p+ 1)2 + 4
3 304(p+ 1)3 + 223 6(p+ 1)6 + 65(p+ 1)3 + 20 6(p+ 1)6 + 41(p+ 1)3 + 20

Table 2: Cost in flops for the formation and assembly of the local stiffness matrix at one quadrature
point (IGA-G/FEA-G) and at one collocation point (IGA-C) in a scalar problem (Laplace). A detailed
derivation is provided in Appendix A.2.

d IGA-C IGA-G FEA-G

1 36(p+ 1) + 2 3(p+ 1)2 + 14(p+ 1) 3(p+ 1)2 + 4(p+ 1)
2 136(p+ 1)2 + 37 24(p+ 1)4 + 69(p+ 1)2 + 4 24(p+ 1)4 + 52(p+ 1)2 + 4
3 323(p+ 1)3 + 223 108(p+1)6+278(p+1)3+20 108(p+1)6+254(p+1)3+20

Table 3: Cost in flops for the formation and assembly of the local stiffness matrix at one quadrature
point (IGA-G/FEA-G) and at one collocation point (IGA-C) in a vector problem (elasticity). A
detailed derivation is provided in Appendix A.3.

3.1.1. Number of quadrature/collocation points

The number of quadrature/collocation points in the model discretizations depends on

n, p and d. Corresponding counts are given in the first row of Table 1 for IGA-C, IGA-G

and FEA-G. The counts for the Galerkin based methods are based on full Gauss quadrature

[96], which is optimal for FEA-G. For IGA-G, we also report counts based on the nearly

optimal quadrature rule recently given in [50]. The latter takes into account the inter-element

continuity of smooth NURBS basis functions and leads to a reduction of point evaluations

by a factor of about 1/2d.

More significant for the efficiency of a method is the ratio between number of quadrature

or collocation points and the number of basis functions, since this relates the number of

point evaluations to the approximation power of the basis. Note that an equivalent measure

is the number of point evaluations per control point or node of the IGA or FEA mesh,

respectively. The corresponding counts are given in the second row of Table 1. In the

third row, we state the asymptotic numbers for the case of n ≫ p. We plot the number

of quadrature/collocation points per basis function for increasing n and p in Fig. 4a and

4b, respectively. We observe that with respect to the optimum ratio of one obtained for

IGA-C, the number of point evaluations per basis function is slightly higher in FEA-G,

eventually converging to a value close to the optimum of one for a large n and p. For IGA-G

(Gauss), however, the number of point evaluations per basis function is one to two orders

of magnitude larger, asymptotically converging to values far away from one.

20

2 3 4 5 6 7 8 9 10
102

103

104

105

106

IGA-G (Gauss)

IGA-C

Polynomial degree p

#
 f

lo
p

s
p

er
 p

o
in

t
ev

al
u

at
io

n

FEA-G

(a) Scalar problem (Laplace).

2 3 4 5 6 7 8 9 10
102

103

104

105

106

IGA-G (Gauss)

IGA-C

Polynomial degree p

#
 f

lo
p

s
p

er
 p

o
in

t
ev

al
u

at
io

n

FEA-G

(b) Vector problem (elasticity).

Figure 5: 2D case: Cost for the formation and assembly of the local stiffness matrix per colloca-
tion/quadrature point in flops.

2 3 4 5 6 7 8 9 10
103

104

105

106

107

108

109

IGA-G (Gauss)

IGA-C

Polynomial degree p

#
 f

lo
p

s
p

er
 p

o
in

t
ev

al
u

at
io

n

FEA-G

(a) Scalar problem (Laplace).

2 3 4 5 6 7 8 9 10
103

104

105

106

107

108

109

IGA-G (Gauss)

IGA-C

Polynomial degree p

#
 f

lo
p

s
p

er
 p

o
in

t
ev

al
u

at
io

n

FEA-G

(b) Vector problem (elasticity).

Figure 6: 3D case: Cost for the formation and assembly of the local stiffness matrix per colloca-
tion/quadrature point in flops.

3.1.2. Cost of formation and assembly at one quadrature/collocation point

The small number of point evaluations is only one advantage of IGA-C. The second im-

portant aspect with respect to computational efficiency is the cost for the evaluation of local

element arrays (e.g., stiffness matrices and residual vectors) at each quadrature/collocation

point. In IGA-G and FEA-G, handling the local element arrays can be considered a two-

step process of “form and assemble”. The term formation refers to their construction by

the algorithms in the element subroutines. The term assembly refers to the placement of

21

the local arrays in the global arrays by the assembly subroutine. In IGA-C, the local array

resulting from one collocation point contains all entries of one row of the global array. It is

therefore more efficient when at each collocation point the local subroutine directly operates

on the corresponding row of the global matrix.

We will show in the following that in IGA-C the cost for the formation and assembly of

the local stiffness matrix at each collocation/quadrature point is considerably smaller than in

IGA-G and FEA-G. To illustrate that, we consider two model PDEs, i.e. the scalar Laplace

equation and the vector equations of linear elasticity, and count the floating point operations

(flops) required at one quadrature point in IGA-G and FEA-G and at one collocation point

in IGA-C. We note that in this paper each multiplication and each addition is considered

as one full floating point operation. We assume that IGA-C and IGA-G use NURBS to

exactly represent the model geometry, and that FEA-G uses the finite element mesh for

the approximation of the model geometry. Furthermore, we neglect the cost of all control

structures and do not use the symmetry of the Galerkin matrices, since it does not hold

for non-symmetric problems such as advection-diffusion. We note that the use of symmetry

in Galerkin methods can decrease the operations required at each quadrature point, since

matrix-matrix products can be reduced to the formation of the upper triangular part of

the local stiffness matrix. However, the potential savings are less than half the operations

at each quadrature point, since the upper triangular matrix contains more than half of

the matrix entries and the expense for the computation of the basis functions and their

gradients remains unchanged. Tables 2 and 3 report the corresponding operation counts per

point evaluation for the case of the Laplace and elasticity problem, respectively. A detailed

derivation of these relations can be found in Appendix A. The evaluation of operation counts

for different polynomial degrees p is illustrated in Figs. 5 and 6 for the 2D and 3D cases,

respectively.

d IGA-C IGA-G (Gauss) FEA-G

1 36(p+ 1) + 2
n(p+ 1)

(n+ p)

(

3(p+ 1)2 + 14(p+ 1)
) n(p+ 1)

(np+ 1)

(

3(p+ 1)2 + 4(p+ 1)
)

2
136(p+ 1)2 + 37

2

n2(p+ 1)2

2(n+ p)2
(

24(p+ 1)4 + 69(p+ 1)2
) n2(p+ 1)2

2(np+ 1)2
(

24(p+ 1)4 + 52(p+ 1)2
)

3
323(p+ 1)3 + 223

3

n3(p+ 1)3

3(n+ p)3
(

108(p+ 1)6 + 278(p+ 1)3
) n3(p+ 1)3

3(np+ 1)3
(

108(p+ 1)6 + 254(p+ 1)3
)

Table 4: Total cost per degree of freedom in flops for the formation and assembly of the global stiffness
matrix in elasticity.

22

2 4 6 8 10 12 14 16 18 20
103

104

105

106

107

elements n per parametric direction

IGA-G (Gauss)

IGA-C

#
 f

lo
p

s
p

er
 d

o
f

FEA-G

Polynomial degree p=4

(a) Constant polynomial degree p=4, increas-
ing number of elements n.

2 3 4 5 6 7 8 9 10
10

3

10
4

10
5

10
6

10
7

IGA-G (Gauss)

IGA-C

Polynomial degree p

#
 f

lo
p

s
p

er
 d

o
f

FEA-G

n=10 elements per

parametric direction

(b) Constant number of elements n=10, in-
creasing polynomial degree p.

Figure 7: 2D elasticity: Cost per degree of freedom for the formation and assembly of the global
stiffness matrix.

2 4 6 8 10 12 14 16 18 20
103

104

105

106

107

108

109

1010

elements n per parametric direction

IGA-G (Gauss)

IGA-C

#
 f

lo
p

s
p

er
 d

o
f

FEA-G

Polynomial degree p=4

(a) Constant polynomial degree p=4, increas-
ing number of elements n.

2 3 4 5 6 7 8 9 10
10

3

104

105

106

107

108

109

1010

IGA-G (Gauss)

IGA-C

Polynomial degree p

#
 f

lo
p

s
p

er
 d

o
f

FEA-G

n=10 elements per

param. dir.

(b) Constant number of elements n=10, in-
creasing polynomial degree p.

Figure 8: 3D elasticity: Cost per degree of freedom for the formation and assembly of the global
stiffness matrix.

We observe that the cost depends on the polynomial degree p of the basis functions and

is of O(pd) and of O(p2d) for IGA-C and IGA-G/FEA-G, respectively. A closer look at

the tables given in Appendices A.2 and A.3 reveals that the parts of O(pd) stem from the

evaluation of the basis functions, which is more expensive in IGA-C due to the computation

of the second order derivatives. Thus, the cost for collocation is practically invariant when we

proceed from the scalar to the vector case (see Figs. 5 and 6), since the main expense stems

23

2 3 4 5
103

104

105

106

107

108

10-6

10-5

10-4

10-3

10-2

10-1

IGA-C

IGA-G (Gauss)
FEA-G

Polynomail degree p

fl
o
p

s

se
co

n
d

s
Operations per degree of freedom in flops

Time per degree of freedom in seconds

(a) Laplace.

2 3 4 5

104

105

106

107

108

109

10-5

10-4

10-3

10-2

10-1

100

IGA-C

IGA-G (Gauss)
FEA-G

fl
o

p
s

se
co

n
d

s

Polynomail degree p

Operations per degree of freedom in flops

Time per degree of freedom in seconds

10-6103

(b) Elasticity.

Figure 9: Cost for formation and assembly of the global stiffness matrix per degree of freedom:
Operation counts in flops vs. timings in seconds.

from the computation of the basis functions and the cost for evaluating additional PDEs at

the same collocation points is negligibly small. In Galerkin methods, the parts of O(p2d)

arise from matrix-matrix products necessary for setting up the local stiffness matrix, which

become increasingly expensive in the vector case (compare Figs. 5a/6a with 5b/6b). As a

consequence, floating point operations at quadrature and collocation points are comparable

for lower p and scalar problems. For larger p or in vector problems, however, the formation

and assembly of local stiffness matrices at a quadrature point is orders of magnitude more

expensive than the formation of a row of the global stiffness matrix at a collocation point.

3.1.3. Elasticity: Cost for formation and assembly of the global stiffness matrix

The full computational cost for the formation and assembly of global arrays can be ob-

tained by multiplying the number of point evaluations with the expense required for one

point evaluation itself. We first consider the formation and assembly of the global stiffness

matrix in an elastic problem. In order to make the cost of IGA-C, IGA-G and FEA-G

comparable, we normalize the total number of flops by the number of degrees of freedom of

the corresponding model discretizations. The resulting costs per degree of freedom in flops

are given in Table 4 and plotted in Figs. 7 and 8 for 2D and 3D cases, respectively, and

clearly manifest the superiority of IGA-C. For all polynomial degrees p and mesh densities

n considered, the cost of IGA-C is several orders of magnitude smaller than the cost re-

quired by IGA-G and FEA-G. For example, looking at the asymptotic costs for the quartic

24

3D discretizations shown in Fig. 8a, we observe that IGA-C requires almost two orders of

magnitude fewer flops than FEA-G and about three and a half orders of magnitude fewer

flops than IGA-G.

To make these relations more tangible, we transfer them to timings: If the total time

for the formation and assembly of the global stiffness matrix of a given size takes one

second in IGA-C, it will take almost two minutes in FEA-G and almost 1.5 hours in IGA-G

to evaluate a global matrix of the same size. Our experience with test computations fully

confirm these operation counts and timings. However, we note that matrices of the same size

have different approximation power in IGA-C, IGA-G and FEA-G. It is therefore important

to also consider accuracy vs. computing time, for which we refer to Section 3.3. To further

corroborate the validity of our operation counts, we test the correlation of the cost for the

formation and assembly of the global stiffness matrix vs. corresponding timings taken from

our code. For each method, we timed computing time for the formation and assembly of a

global stiffness matrix with a target size of about 30,000 degrees of freedom for p=2 through

5, and normalized the result by the number of degrees of freedom. Figure 9 shows that

the operation counts per degree of freedom derived for the formation and assembly of the

Laplace and elasticity matrices closely follow the trend of the corresponding timings.

3.1.4. Elastodynamics: Cost for an explicit time step

We examine the cost of one time step in an explicit Newmark predictor/multicorrector

scheme [2, 52, 96]. For simplicity, we assume that the problem is linear elastic with constant

density and no damping and that two explicit passes are sufficient. In this case, the lumped

mass matrix can be computed beforehand, stored in a vector, and used throughout all time

steps. We therefore assume that the lumped mass matrix is known. In each corrector step,

1. Predictor step: Compute a,u 6 GVOs
2. Compute residual vector: ∆F = F ext −Ma−Ku 1 FGR
3. Solve explicit system with lumped mass: M ∗∆a = ∆F 1 GVO
4. First corrector step: Update a += ∆a 1 GVO
5. Update residual with consistent mass: ∆F −= M∆a 1 UGR
6. Solve explicit system with lumped mass: M ∗∆a = ∆F 1 GVO
7. Second corrector step: Update a += ∆a 1 GVO
8. Compute norm 4 GVOs

In total 14 GVOs + FGR + UGR

Table 5: Operations for an explicit time step with two corrector passes. GVO, FGR and UGR denote
a global vector operation, the formation of the global residual vector from local entities and the update
of the global residual, respectively (see Table 6). +=/−= denote “add assignment” operators.

25

d IGA-C IGA-G FEA-G

1. Global vector operation (GVO) (subtract/scalar multiply/etc.):

1 (n+ p) (n+ p) (np+ 1)
2 2(n+ p)2 2(n+ p)2 2(np+ 1)2

3 3(n+ p)3 3(n+ p)3 3(np+ 1)3

2. Formation and assembly of the global residual (FGR) (see Appendix A.4 for details):

1 (12(p+ 1) + 12)(n+ p) n(23(p+ 1)2 + 6(p+ 1)) n(13(p+ 1)2 + 6(p+ 1))
2 (42(p+1)2 +119)(n+ p)2 n2(57(p+ 1)4 + 17(p+ 1)2) n2(40(p+ 1)4 + 17(p+ 1)2)
3 (100(p+1)3+573)(n+p)3 n3(104(p+ 1)6 + 45(p+ 1)3) n3(80(p+ 1)6 + 45(p+ 1)3)

3. Update of the global residual (UGR) (see step 4. of Appendix A.4):

1 (2(p+ 1) + 2)(n+ p) n(5(p+ 1)2 + 2(p+ 1)) n(5(p+ 1) + 2(p+ 1))
2 (4(p+ 1)2 + 4)(n+ p)2 n2(10(p+ 1)4 + 2(p+ 1)2) n2(10(p+ 1)4 + 2(p+ 1)2)
3 (6(p+ 1)3 + 6)(n+ p)3 n3(15(p+ 1)6 + 2(p+ 1)3) n3(15(p+ 1)6 + 2(p+ 1)3)

Table 6: Number of floating point operations (flops) required for a global vector operation (GVO),
formation and assembly of the global residual (FGR) and its update (UGR).

the global residual vector is assembled by summing up the local contributions computed

at each collocation point (IGA-C) and at all quadrature points of each element (IGA-G

and FEA-G). This eliminates the need to store global vectors, and is therefore widely used

in explicit codes such as LS-DYNA [102]. It requires the computation of local inertial,

external and internal force vectors in the first corrector pass and the update of acceleration

contributions to the residual on subsequent passes. For linear elasticity, the operations

required for one explicit time step are summarized in Table 5.

The cost in flops for a global vector operation such as subtraction or scalar multiplication

corresponds to the number of degrees of freedom in the model discretization under considera-

tion. The cost for the formation and update of the residual vector per collocation/quadrature

point are derived in Appendix A.4. For IGA-C we use an optimized algorithm to evaluate

displacements and accelerations (see Algorithm 2 in Appendix A) that considerably reduces

the number of linear system solves required for the computation of second order derivatives.

For IGA-G and FEA-G we assume optimized linear algebra routines that avoid operations

on zero entries of local matrices (see Appendix A.4). We multiply the flops per point eval-

uation given in Appendix A.4 with the total number of collocation/quadrature points to

obtain the total cost in flops for the formation and update of the global residual vector (see

Table 6). On this basis, we can compute the total number of flops per degree of freedom

that are required for a two pass time step in the Newmark predictor/multicorrector scheme,

using the information in Tables 1, 5 and 6. The resulting counts are summarized in Table 7.

In Figs. 10 and 11, we illustrate the time step cost per degree of freedom for 2D and

26

d IGA-C IGA-G FEA-G

1 14(p+ 1) + 28
n(28(p+ 1)2 + 8(p+ 1))

(n+ p)
+ 14

n(18(p+ 1)2 + 8(p+ 1))

np+ 1
+ 14

2 23(p+ 1)2 + 76
n2(67(p+ 1)4 + 19(p+ 1)2)

2(n+ p)2
+ 14

n2(50(p+ 1)4 + 19(p+ 1)2)

2(np+ 1)2
+ 14

3 35(p+ 1)3 + 207
n3(119(p+ 1)6 + 47(p+ 1)3)

3(n+ p)3
+14

n3(95(p+ 1)6 + 47(p+ 1)3)

3(np+ 1)3
+ 14

Table 7: Total number of flops per degree of freedom for an explicit time step (2 corrector passes).

3D model discretizations with quadratic and quartic basis functions. The combination of

a minimum number of point evaluations with an inexpensive evaluation per point leads

again to a significant reduction of the cost in IGA-C as compared to IGA-G. We observe

in Fig. 11 that for 3D discretizations, the cost of IGA-C is between one and two orders

of magnitude smaller than the cost of IGA-G. In FEA-G, the cost per quadrature point is

slightly smaller than the cost per collocation point in IGA-C (see Appendix A.4). However,

due to the optimal ratio of point evaluations to basis functions in collocation, the cost per

degree of freedom is distinctly larger in FEA-G than in IGA-C. We note that if the point

is to gain maximal speed, one could replace NURBS with B-splines. This would reduce

the cost of IGA-C in 3D by an additional 15% with respect to what is shown here, and

would further extend the lead of IGA-C with respect to FEA-G. We believe that in typical

application fields of explicit dynamics such as car crash or metal forming, one would make

many simplifications to minimize cost, and the B-splines simplification for analysis of a

NURBS model would be probably first and foremost.

In addition, we emphasize that the cost of explicit dynamics also depends largely on the

size of the critical time step. It has been shown in previous works (see for example [14])

that IGA allows for much larger stable time steps than FEA-G. Moreover, we remark that

the high modes in FEA-G are notoriously ill-behaved (see for example [2, 8, 103]), which is

not the case for IGA. On this basis, we can expect IGA-C to be significantly less expensive

than FEA-G in an explicit elastodynamics setting.

3.2. Cost of direct and iterative solvers

In the next step, we provide estimates of the computational cost necessary for the solution

of discrete systems of algebraic equations. We do not focus on a specific solver implementa-

tion, but examine two key indicators, i.e. the bandwidth of the system matrix and the cost

of global matrix-vector products, that characterize the computational efficiency of direct

and iterative solvers, respectively. To this end, we consider a scalar problem (e.g. Laplace)

27

0.0

0.5

1.0

1.5

2.0

2.5

3.0

#
 f

lo
p

s
p

er
 d

o
f

10 3x

5 10 15 20 25 30 35 40 45 50
elements n per parameric direction

IGA-G (Gauss)
FEA-G

2D / p=2

IGA-C

(a) Quadratics in 2D.

0.0

0.5

1.0

1.5

2.0

#
 f

lo
p

s
p

er
 d

o
f

10 4x

5 10 15 20 25 30 35 40 45 50
elements n per parameric direction

IGA-G (Gauss)
FEA-G

2D / p=4

IGA-C

(b) Quartics in 2D.

Figure 10: 2D linear elastodynamics: Cost per degree of freedom for an explicit time step with 2
corrector passes.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

#
 f

lo
p

s
p

er
 d

o
f

10 4x

5 10 15 20 25 30 35 40 45 50
elements n per parameric direction

IGA-G (Gauss)
FEA-G

3D / p=2

IGA-C

(a) Quadratics in 3D.

0.0

1.0

2.0

3.0

4.0

5.0

#
 f

lo
p

s
p

er
 d

o
f

10 5x

5 10 15 20 25 30 35 40 45 50
elements n per parameric direction

IGA-G (Gauss)
FEA-G

3D / p=4

IGA-C

(b) Quartics in 3D.

Figure 11: 3D linear elastodynamics: Cost per degree of freedom for an explicit time step with 2
corrector passes.

and corresponding model discretizations in 1D, 2D, and 3D. We assume a lexicographical

ordering of the basis functions according to the parametric directions of the NURBS patch

and the FEA mesh. To illustrate the principle of a lexicographical ordering scheme, we

consider 3D tensor-product basis functions φijk = Ni(ξ)Nj(η)Nk(ζ). They are composed

of one-dimensional components Ni, Nj and Nk in each parametric direction that are num-

bered consecutively from i = 1 . . . nξ, j = 1 . . . nη and k = 1 . . . nζ , respectively, where nξ,

nη and nζ denote the total number of basis functions in each parametric direction. The

28

d IGA-C (even p) IGA-C (odd p) IGA-G
1 p/2 (p− 1)/2 p

2
p (1 + (n+ p))

2

(p− 1)(1 + (n+ p))

2
p(1 + (n+ p))

3
p(1 + (n+ p) + (n+ p)2)

2

(p− 1)(1 + (n+ p) + (n+ p)2)

2
p(1+(n+p)+(n+p)2)

Table 8: Lower/upper bandwidth (k1/k2) of the system matrix for a scalar problem. Due to the
symmetry of the lexicographical ordering, k1 = k2 in the present case.

lexicographical number nbf of a particular basis function φijk can then be found as

nbf = (k − 1)nξnη + (j − 1)nξ + i (26)

3.2.1. Bandwidth

System matrices in IGA-C, IGA-G and FEA-G are typically sparse matrices, in which

the non-zero elements are restricted to a small band along the main diagonal of the matrix.

The non-zero band of a matrix A = [aij] is characterized by the lower and upper bandwidth,

which are the smallest integers k1 and k2 such that aij = 0 for i − j > k1 and j − i >

k2, respectively, and the bandwidth of A, which is k1 + k2 + 1 [104–106]. The classical

LU decomposition factorizes a generally non-symmetric matrix as the product of a lower

triangular matrix L and an upper triangular matrix U , from which the solution is found by

forward elimination and back substitution. Classical operation counts for LU factorization of

sparse banded matrices are of O(2neq k1 k2) [104], where neq denotes the number of equations

in the systems. While implementations of direct solvers greatly vary, the underlying main

algorithm corresponds still to LU factorization and therefore, its trend applies to the best

existing direct solvers [42]. The square of the bandwidth in the classical operation count

indicates its important role for the performance of direct solvers.

Discretizations with smooth spline basis functions that exhibit maximum Cp−1 continuity

show a homogeneous bandwidth throughout the matrix. In this case it has been confirmed

that the classical counts for LU factorization yield very accurate estimates that are close

to the cost of modern sparse direct solver implementations [107]. Discretizations that arise

from C0 finite elements show a multi-block structure. For this case, more advanced direct

techniques such as multi-frontal algorithms and static condensation can be used that require

only a fraction of the classical operation counts, in particular if a high polynomial degree p

is considered. This was illustrated recently by the study of Collier et al. [42] that compares

29

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

IGA-G

IGA-C

L
o

w
er

/u
p

p
er

 b
an

d
w

id
th

Lexicographical ordering

Polynomial degree p=4

elements n per parametric direction

(a) Constant polynomial degree p=4, increas-
ing number of elements n.

0

50

100

150

200

250

300

350

IGA-G

IGA-C

L
o

w
er

/u
p

p
er

 b
an

d
w

id
th

2 3 4 5 6 7 8 9 10
Polynomial degree p

Lexicographical ordering

n=20 in all parametric directions

(b) Constant number of elements n=10, in-
creasing polynomial degree p.

Figure 12: Lower/upper bandwidth of the global stiffness matrix resulting from a 2D NURBS dis-
cretization of a scalar problem.

2 4 6 8 10 12 14 16 18 20

1000

2000

3000

4000

5000

6000

7000

8000

9000

IGA-G

IGA-C

L
o

w
er

/u
p

p
er

 b
an

d
w

id
th Lexicographical ordering

Polynomial degree p=4

elements n per parametric direction

0

(a) Constant polynomial degree p=4, increas-
ing number of elements n.

1000

2000

3000

4000

5000

6000

7000

8000

9000

IGA-G

IGA-C

L
o

w
er

/u
p

p
er

 b
an

d
w

id
th

0
2 3 4 5 6 7 8 9 10

Polynomial degree p

Lexicographical ordering

n=20 in all parametric directions

(b) Constant number of elements n=10, in-
creasing polynomial degree p.

Figure 13: Lower/upper bandwidth of the global stiffness matrix resulting from a 3D NURBS dis-
cretization of a scalar problem.

the performance of direct solvers for FEA-G and IGA-G.

Table 8 shows the lower/upper bandwidth in global stiffness matrices that result from

the discretization of a scalar Laplace problem by IGA-C and IGA-G. Due to the symmetry

of the lexicographical ordering of the spline basis functions, lower and upper bandwidths

are equal. For IGA-C, the Greville abscissae yield collocation points that are located in the

center of a knot span for even p and directly at a knot for odd p, so that the number of non-

30

IGA-C (even p) IGA-C (odd p) IGA-G FEA-G (average)
(p+ 1)d pd (2p+ 1)d (p+ 2)d

Table 9: Population (number of non-zero entries) in each row of the global stiffness matrix that
results from a discretization of a scalar problem.

zero basis functions at a collocation point does not change for even and the next higher odd

p. Therefore, spline basis functions of even polynomial degree lead to the same bandwidth

as those of odd p. The lower/upper bandwidths for 2D and 3D NURBS discretizations with

lexicographical ordering are illustrated in Figs. 12 and 13. We observe that IGA-G leads

to bandwidths that are twice as large as those of IGA-C. Based on the classical operation

counts for LU factorization, we can therefore expect a better performance of direct solvers

for IGA-C than for IGA-G.

3.2.2. Cost of matrix-vector products

The performance of iterative solvers mainly depends on the cost of global matrix-vector

products, which constitute the main expense during an iteration, and the conditioning of the

system, which is of key importance for convergence with a minimum number of iterations

[105]. Auricchio et al. [51] analyzed the eigenspectrum of collocation matrices and showed

that their conditioning is comparable to those resulting from IGA-G. In particular, the upper

part of the discrete eigenspectra in IGA-C and IGA-G is better behaved than in FEA-G,

which results in better conditioned discrete systems. Despite the importance of conditioning,

here we simply focus on the cost of matrix-vector products.

Table 9 shows the population of the global stiffness matrix, i.e. the number of non-zero

entries in each row, for IGA-C, IGA-G and FEA-G. Due to the homogeneous structure of

spline basis functions, the number of their interactions in IGA-C and IGA-G is constant

except for the non-uniform basis functions at patch boundaries that involve repeated knots.

However, their influence is negligible when discretizations of large n are considered. For

IGA-C, one can again differentiate between collocation with basis functions of even and odd

polynomial degree p due to the location of the collocation points. In FEA-G, basis functions

can be classified into vertex, edge, face and interior functions, each of which interacts with

a different amount of neighboring basis functions [43]. Using Table 3.1 given in [43], we

compute the average population in FEA-G to be (p+ 2)d.

For computing the matrix-vector product, one floating point operation is required for

multiplication of each non-zero matrix entry with the corresponding vector component and

one floating point operation for addition to the result. Using the data of Table 9, the

31

2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

IGA-G

IGA-C

Polynomial degree p

#
 f

lo
p

s
p

er
 r

o
w

FEA-G

(a) 2D case.

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
10 4x

IGA-G

IGA-C

Polynomial degree p

#
 f

lo
p

s
p

er
 r

o
w

FEA-G

(b) 3D case.

Figure 14: Cost of matrix-vector product per row (i.e. per degree of freedom). It constitutes a suitable
indicator for the performance of iterative solvers.

number of flops for the complete matrix-vector product operation can thus be computed

by taking twice the average number of non-zero entries per row times the total number of

rows in the matrix. Figures 14a and 14b plot the resulting cost per row (i.e. per degree of

freedom) for IGA-C, IGA-G and FEA-G. We observe that IGA-C significantly reduces the

cost for a matrix-vector product as compared to IGA-G, and is even slightly less expensive

than FEA-G. Thus, all else being equal, we can expect that iterative solvers would perform

considerably better for IGA-C than for IGA-G. This is what will be observed in the next

section for timings taken from a preconditioned GMRES solver that is applied to solve

systems of equations obtained with IGA-C, IGA-G and FEA-G.

3.3. Cost vs. accuracy

Finally, we assess IGA-C, IGA-G and FEA-G in terms of the computational cost required

to achieve a specified level of accuracy. As a measure of accuracy, we use the relative error

in the L2 norm and the H1 semi-norm. As a measure of cost, we use the total number

of degrees of freedom as well as the serial computing time on a single processor. While

the former is a good indicator for the approximation power and convergence properties of

a method, the true computing time required to achieve a specified level of accuracy is the

decisive question from a practical point of view.

3.3.1. A set of scalar and vector problems with smooth and “rough” solutions

We examine smooth and “rough” solutions of scalar and vector boundary value problems

in three dimensions. As a representative scalar problem, we consider Poisson’s equation in

32

Figure 15: Smooth solution of Poisson’s problem (left) and its derivative with respect to the vertical
direction (right).

the framework of the following boundary value problem

−∆u = f in Ω (27a)

u = uD on ΓD (27b)

∇u · n = h on ΓN (27c)

for which we assume exact smooth and rough solutions defined over the cube Ω = [0, 1]3.

The corresponding smooth solution reads

u = sin(2πx) sin(2πy) sin(2πz) (28)

In accordance with Eq. (28), we can assume homogeneous Dirichlet boundary conditions

over all surfaces of the cube. The exact smooth solution field and one of its first derivatives

are plotted in Fig. 15. Insertion of Eq. (28) into the PDE Eq. (27a) yields the exact source

term

f = 12π2 sin(2πx) sin(2πy) sin(2πz) (29)

As a rough solution to Poisson’s problem Eq. (27), we assume

u = xyz
(

(x− 1)2 + (y − 1)2 + (z − 1)2
)

1

4 (30)

Due to its exponent smaller than one, its derivatives exhibit a singularity in the corner

{x, y, z} = {1, 1, 1}. We plot the exact solution field as well as one of its derivatives in

33

Figure 16: Rough solution of Poisson’s problem (left) and its derivative with respect to x (right).
The coloring on the right is scaled to best illustrate the singularity in the corner.

Fig. 16. Insertion of Eq. (30) into the PDE Eq. (27a) yields the exact source term

f = −
15xyz − 4xz − 4xy − 4yz

4 ((x− 1)2 + (y − 1)2 + (z − 1)2)
3

4

(31)

We assume the following boundary conditions that are compatible to the exact solution

Eq. (30). At the surfaces x = 0, y = 0 and z = 0 and at the corner {x, y, z} = {1, 1, 1}, we

can again apply homogeneous Dirichlet constraints, while at the other surfaces we impose

the following regular Neumann boundary conditions

At x = 1: h = yz
(

(y − 1)2 + (z − 1)2
)

1

4 (32a)

At y = 1: h = xz
(

(x− 1)2 + (z − 1)2
)

1

4 (32b)

At z = 1: h = xy
(

(x− 1)2 + (y − 1)2
)

1

4 (32c)

As a representative vector problem, we consider the PDE system of linear elasticity (see

for example [96, 108]). To derive a set of exact smooth and rough solutions, we follow the

same procedure as described for the scalar case of Poisson’s problem.1 In the scope of the

present paper, we restrict ourselves to outline the main points. For the smooth and rough

1We encourage interested readers to contact the corresponding author, if they find the following infor-
mation too sparse to fully reconstruct the derivation.

34

case, respectively, we assume the following two sets of displacement fields

u = v = w = sin(2πx) sin(2πy) sin(2πz) (33)

u = v = w = xyz
(

(x− 1)2 + (y − 1)2 + (z − 1)2
)

1

4 (34)

We choose the same solution fields for all displacement components in order to limit the

number of terms of the resulting analytical quantities. Inserting Eqs. (33) and (34) into

Navier’s equations of elasticity [108] yields the body forces fx, fy and fz for the smooth

and rough cases, respectively. For the smooth case, compatibility with Eq. (33) allows the

imposition of homogeneous Dirichlet boundary conditions. For the rough case, we need to

partially impose Neumann boundary conditions at the surfaces x = 1, y = 1 and z = 1 that

can be derived by inserting Eq. (34) in the strain-displacement and constitutive relations.

For the computations, we assumed Young’s modulus E=1 and Poisson’s ratio ν=0.3.

We discretize the 3D cube by a structured grid whose elements either use Cp−1 NURBS

for IGA-C and IGA-G or C0 Bernstein polynomials for FEA-G. For IGA-G, we use full

Gauss quadrature in each element. All three methods are implemented within the same

code, so that the only difference in the implementation of the three methods is in the

formation and assembly of the stiffness matrix. The resulting system of equations is solved

iteratively by a GMRES solver after preconditioning the stiffness matrix based on incomplete

LU factorizations with zero fill-ins. The GMRES solver and the preconditioner are provided

by Sandia’s Trilinos packages AztecOO and Ifpack, respectively [109]. The timings2 include

the formation and assembly of the stiffness matrix and load vector, the preconditioning of

the system of equations and its solution by the GMRES solver, but exclude all pre- and

post-processing steps such as the computation of error norms. We consider four different

polynomial degrees of the basis functions from quadratics (p=2) up to quintics (p=5). For

each problem and each p, we first increase the number of degrees of freedom by uniform

mesh refinement from about 200 to about 200,000 in each method, and record the relative

errors in the L2 norm and H1 semi-norm. The convergence results with respect to the

number of degrees of freedom are shown in Figs. 17, 19, 21, 23 for the smooth Poisson

and elasticity problems, and in Figs. 25, 27, 29 and 31 for the rough Poisson and elasticity

problems. For each problem and each p, we then increase the computing times by uniform

mesh refinement from about 1 second to about 1,000 seconds, and record the relative errors

in the L2 norm and H1 semi-norm. To ensure the reliability of the timings, we do not

2Using a single thread on a Intel(R) Xeon(R) W5590 @ 3.33GHz with 70 GB of RAM

35

Figure 17:

Smooth 3D

Poisson:

L2 error vs. de-

grees of freedom

10-10

10-8

10-6

10-4

10-2

10 0

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 L

 n

o
rm

1
3

2

p=2

1

3

1
2

IGA-C

FEA-G
IGA-G

10-10

10-8

10-6

10-4

10-2

10 0

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 L

 n

o
rm

1
3

2

p=3

1

4

1
2

IGA-C

FEA-G
IGA-G

10-10

10-8

10-6

10-4

10-2

10 0

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 L

 n

o
rm

1
3

2

p=4

1

5

1

4

IGA-C

FEA-G
IGA-G

10-10

10-8

10-6

10-4

10-2

10 0

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 L

 n

o
rm

1
3

2

1

6

1

4

p=5

IGA-C

FEA-G
IGA-G

Figure 18:

Smooth 3D
Poisson:

L2 error vs. time

(Matrix formation and
assembly, precondition-
ing, solution with an it-
erative solver)

IGA-C

FEA-G
IGA-G

p=2

3 30 100 300

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -3

10 -2

IGA-C

FEA-G
IGA-G

p=3

3 30 100 300

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -3

10 -2

IGA-C

FEA-G
IGA-G

p=4

3 30 100 300

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -3

10 -2

IGA-C

FEA-G
IGA-G

p=5

3 30 100 300

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -3

10 -2

36

Figure 19:

Smooth 3D

Poisson:

H1 error vs. de-

grees of freedom

10-10

10-8

10-6

10-4

10-2

10 0

5 10 20 40 80
(# degrees of freedom)

1
3

IGA-C

FEA-G
IGA-G

p=2

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

1
2

10-10

10-8

10-6

10-4

10-2

10 0

5 10 20 40 80
(# degrees of freedom)

1
3

IGA-C

FEA-G
IGA-G

p=3

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1 1
3

1
2

10-10

10-8

10-6

10-4

10-2

10 0

5 10 20 40 80
(# degrees of freedom)

1
3

p=4

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

1

4

IGA-C

FEA-G
IGA-G

10-10

10-8

10-6

10-4

10-2

10 0

5 10 20 40 80
(# degrees of freedom)

1
3

p=5

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

1

5

1

4

IGA-C

FEA-G
IGA-G

Figure 20:

Smooth 3D
Poisson:

H1 error vs. time

(Matrix formation and
assembly, precondition-
ing, solution with an it-
erative solver)

IGA-C

FEA-G
IGA-G

p=2

3 30 100 300

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

10 -3

10 -2

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

IGA-C

FEA-G
IGA-G

p=3

3 30 100 300

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

10 -3

10 -2

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

IGA-C

FEA-G
IGA-G

p=4

3 30 100 300

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

10 -3

10 -2

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

IGA-C

FEA-G
IGA-G

p=5

3 30 100 300

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

10 -3

10 -2

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

37

Figure 21:

Smooth 3D

elasticity:

L2 error vs. de-

grees of freedom

10-8

10-7

10-6

10-5

10-4

10-3

10-2

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G
IGA-G

1
2

p=2
10 -1

10 0

10-9

1
3

10-8

10-7

10-6

10-5

10-4

10-3

10-2

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G
IGA-G

1
2

p=3
10 -1

10 0

10-9

1

4

10-8

10-7

10-6

10-5

10-4

10-3

10-2

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G
IGA-G

1

4

p=4
10 -1

10 0

10-9

1

5

10-8

10-7

10-6

10-5

10-4

10-3

10-2

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G
IGA-G

1

4

p=5
10 -1

10 0

10-9

1

6

Figure 22:

Smooth 3D
elasticity:

L2 error vs. time

(Matrix formation and
assembly, precondition-
ing, solution with an it-
erative solver)

IGA-C

FEA-G
IGA-G

p=2

3 30 100 300 1000

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -3

10 -2

IGA-C

FEA-G
IGA-G

p=3

3 30 100 300 1000

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -3

10 -2

IGA-C

FEA-G
IGA-G

p=4

3 30 100 300 1000

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -3

10 -2

IGA-C

FEA-G
IGA-G

p=5

3 30 100 300 1000

Time [seconds]

10
10 -8

10

10 -5

10 -4

-7

10 -6

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -3

10 -2

38

Figure 23:

Smooth 3D

elasticity:

H1 error vs. de-

grees of freedom

10-8

10-7

10-6

10-5

10-4

10-3

10-2

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G
IGA-G

1
2

p=2
10 -1

10 0

10-8

10-7

10-6

10-5

10-4

10-3

10-2

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G
IGA-G

1
2

p=3
10 -1

10 0

1

3

10-8

10-7

10-6

10-5

10-4

10-3

10-2

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G
IGA-G

1

4

p=4
10 -1

10 0

10-8

10-7

10-6

10-5

10-4

10-3

10-2

5 10 20 40 80
(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

1

5
IGA-C

FEA-G
IGA-G

1

4

p=5
10 -1

10 0

Figure 24:

Smooth 3D
elasticity:

H1 error vs. time

(Matrix formation and
assembly, precondition-
ing, solution with an it-
erative solver)

IGA-C

FEA-G
IGA-G

p=2

3 30 100 300 1000

Time [seconds]

10
10

10 -5

10 -4

-7

10 -6

10 -3

10 -2

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

IGA-C

FEA-G
IGA-G

p=3

3 30 100 300 1000

Time [seconds]

10
10

10 -5

10 -4

-7

10 -6

10 -3

10 -2

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

IGA-C

FEA-G
IGA-G

p=4

3 30 100 300 1000

Time [seconds]

10
10

10 -5

10 -4

-7

10 -6

10 -3

10 -2

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

IGA-C

FEA-G
IGA-G

p=5

3 30 100 300 1000

Time [seconds]

10
10

10 -5

10 -4

-7

10 -6

10 -3

10 -2

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

39

consider overall computing times below one second. The corresponding equation systems

range in size between 1,000 and 100,000 degrees of freedom for IGA-G, between 25,000 and

400,000 degrees of freedom for FEA-G and between 100,000 and 1,000,000 degrees of freedom

for IGA-C. The convergence results with respect to computing time are shown in Figs. 18,

20, 22 and 24 for the smooth Poisson and elasticity problems, and in Figs. 26, 28, 30 and

32 for the rough Poisson and elasticity problems. Each figure compares the corresponding

performance of IGA-C (red curve), IGA-G (blue curve) and FEA-G (green curve).

3.3.2. Theoretical analysis of isogeometric collocation

Before discussing the results of the convergence study, we briefly recall the following error

estimate that holds for IGA-G and FEA-G [101, 110, 111]

‖u− û‖s ≤ C hk−s ‖u‖k (35)

where û is the approximation to the true solution u, and C is a constant. In the cases

s=0 and s=1, ‖ · ‖0 and ‖ · ‖1 denote the L2 norm and the H1 norm, respectively. The

corresponding exponent to the mesh size h denotes the rate of convergence, whose optimal

values of O(p+ 1) in L2 and O(p) in H1 occur when k=p+1.

Unfortunately, an abstract mathematical framework that allows a thorough numerical

analysis of collocation methods has not yet been established. A thorough theoretical anal-

ysis of IGA-C including proofs of stability, convergence and error estimates in the sense of

Eq. (35) is only available for the one-dimensional case [51]. For higher-dimensional spline

spaces, theoretical studies have been accomplished only for some special cases [95, 112, 113].

As a consequence, convergence results for 2D and 3D NURBS discretizations are currently

available only based on numerical studies [51, 52]. IGA collocation with basis functions

of polynomial degree p and continuity Cp−1 was observed numerically to converge with a

rate of O(p) for the error in the L2 norm and H1 semi-norm, if the polynomial degree p is

even, and with a rate of O(p − 1) for the error in the L2 norm and H1 semi-norm, if the

polynomial degree p is odd. For collocation, we refer to these convergence rates in the L2

norm and H1 semi-norm as the best possible rates, since we do not expect to achieve higher

rates. We note that IGA collocation with basis functions of general polynomial degree p and

continuity Cp−1 converges optimally to the exact solution in the W 2,∞ norm in the strict

sense of Eq. (35) [51].

40

Figure 25:

Rough 3D

Poisson:

L2 error vs. de-

grees of freedom

5 10 20 40 80
10 -5

10

10 -2

10 -1

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 L

 n

o
rm

1
3

IGA-G

IGA-C

FEA-G

1

1.5

-4

10 -3

2

p=2

5 10 20 40 80
10 -5

10

10 -2

10 -1

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 L

 n

o
rm

1
3

IGA-G

IGA-C

FEA-G 1

1.5-4

10 -3

2

p=3

5 10 20 40 80
10 -5

10

10 -2

10 -1

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 L

 n

o
rm

1
3

IGA-G

IGA-C

FEA-G

1

1.5

-4

10 -3

2

p=4

5 10 20 40 80
10 -5

10

10 -2

10 -1

(# degrees of freedom)
R

el
.
E

rr
o
r

in
 L

 n

o
rm

1
3

IGA-G

IGA-C

FEA-G

1

1.5

-4

10 -3

2

p=5

Figure 26:

Rough 3D
Poisson:

L2 error vs. time

(Matrix formation and
assembly, precondition-
ing, solution with an it-
erative solver)

IGA-C

FEA-G
IGA-G

p=2

3 30 100 300

Time [seconds]

10
10 -5

10 -3

10 -4

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -2

IGA-C

FEA-G
IGA-G

p=3

3 30 100 300

Time [seconds]

10
10 -5

10 -3

10 -4

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -2

IGA-C

FEA-G
IGA-G

p=4

3 30 100 300

Time [seconds]

10
10 -5

10 -3

10 -4

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -2

IGA-C

FEA-G
IGA-G

p=5

3 30 100 300

Time [seconds]

10
10 -5

10 -3

10 -4

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

10 -2

41

Figure 27:

Rough 3D

Poisson:

H1 error vs. de-

grees of freedom

5 10 20 40 80
10 -3

10 -2

10 -1

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G

1

1IGA-G

10 0

p=2

5 10 20 40 80
10 -3

10 -2

10 -1

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G

1

1IGA-G

10 0

p=3

5 10 20 40 80
10 -3

10 -2

10 -1

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G

1

1IGA-G

10 0

p=4

5 10 20 40 80
10 -3

10 -2

10 -1

(# degrees of freedom)
R

el
.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G

1

1IGA-G

10 0

p=5

Figure 28:

Rough 3D
Poisson:

H1 error vs. time

(Matrix formation and
assembly, precondition-
ing, solution with an it-
erative solver)

IGA-C

FEA-G
IGA-G

p=2

3 30 100 300

Time [seconds]

10
10 -3

10 -2

10 -1

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

IGA-C

FEA-G
IGA-G

p=3

3 30 100 300

Time [seconds]

10
10 -3

10 -2

10 -1

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

IGA-C

FEA-G
IGA-G

p=4

3 30 100 300

Time [seconds]

10
10 -3

10 -2

10 -1

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

IGA-C

FEA-G
IGA-G

p=5

3 30 100 300

Time [seconds]

10
10 -3

10 -2

10 -1

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

42

Figure 29:

Rough 3D

elasticity:

L2 error vs. de-

grees of freedom

5 10 20 40 80
10 -4

10

10 -2

10 -1

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 L

 n

o
rm

1
3

2

IGA-G

IGA-C

FEA-G

1

2

-3

p=2

5 10 20 40 80
10 -4

10

10 -2

10 -1

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 L

 n

o
rm

1
3

2

IGA-G

IGA-C

FEA-G

1

2

-3

p=3

5 10 20 40 80
10 -4

10

10 -2

10 -1

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 L

 n

o
rm

1
3

2

IGA-G

IGA-C

FEA-G

1

2

-3

p=4

5 10 20 40 80
10 -4

10

10 -2

10 -1

(# degrees of freedom)
R

el
.
E

rr
o
r

in
 L

 n

o
rm

1
3

2

IGA-G

IGA-C

FEA-G

1

2

-3

p=5

Figure 30:

Rough 3D
elasticity:

L2 error vs. time

(Matrix formation and
assembly, precondition-
ing, solution with an it-
erative solver)

p=2

Time [seconds]

10-4

10-3

10-2

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

3 30 100 300 100010

IGA-C

FEA-G
IGA-G

p=3

Time [seconds]

10-4

10-3

10-2

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

3 30 100 300 100010

IGA-C

FEA-G
IGA-G

p=4

Time [seconds]

10-4

10-3

10-2

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

3 30 100 300 100010

IGA-C

FEA-G
IGA-G

p=5

Time [seconds]

10-4

10-3

10-2

R
el

.
E

rr
o
r

in
 L

 n

o
rm

2

3 30 100 300 100010

IGA-C

FEA-G
IGA-G

43

Figure 31:

Rough 3D

elasticity:

H1 error vs. de-

grees of freedom

5 10 20 40 80
10 -3

10 -2

10 -1

10 0

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G
1

1

IGA-G

p=2

5 10 20 40 80
10 -3

10 -2

10 -1

10 0

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G 1

1

IGA-G

p=3

5 10 20 40 80
10 -3

10 -2

10 -1

10 0

(# degrees of freedom)

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G

1

1
IGA-G

p=4

5 10 20 40 80
10 -3

10 -2

10 -1

10 0

(# degrees of freedom)
R

el
.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1
3

1

IGA-C

FEA-G

1

1IGA-G

p=5

Figure 32:

Rough 3D
elasticity:

H1 error vs. time

(Matrix formation and
assembly, precondition-
ing, solution with an it-
erative solver)

p=2

Time [seconds]

10-4

10-3

10-2

3 30 100 300 100010

IGA-C

FEA-G
IGA-G

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

p=3

Time [seconds]

10-4

10-3

10-2

3 30 100 300 100010

IGA-C

FEA-G
IGA-G

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

p=4

Time [seconds]

10-4

10-3

10-2

3 30 100 300 100010

IGA-C

FEA-G
IGA-G

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

p=5

Time [seconds]

10-4

10-3

10-2

3 30 100 300 100010

IGA-C

FEA-G
IGA-G

R
el

.
E

rr
o
r

in
 H

 s

em
i-

n
o
rm

1

44

3.3.3. Accuracy vs. the number of degrees of freedom

The plots showing error norms vs. the number of degrees of freedom allow us to examine

and compare the convergence properties of IGA-C, IGA-G and FEA-G. To establish a link

between the mesh size h being a 1D measure and the number of degrees of freedom emanating

from 3D discretizations, we take the cube root of the latter. Focusing on the smooth scalar

and vector problems first (see Figs. 17, 19, 21, 23), we observe that both IGA-G and FEA-G

achieve optimal rates of convergence in both the L2 and H1 norms for all polynomial degrees

considered. For p=4 and p=5, IGA-G can be observed to be slightly superconvergent with

asymptotic rates that exceed the theoretical optimum by up to 10%. With respect to the

accuracy per degree of freedom, IGA-G is by far more accurate than FEA-G. The absolute

difference in error between the corresponding asymptotic curves amounts to up to 2.5 orders

of magnitude in the L2 norm and 1.5 orders of magnitude in the H1 semi-norm. For IGA-C,

we observe that the best possible rates in both norms are achieved in all cases. Due to its

lower rates of convergence, we would expect that asymptotically IGA-C would always lag

behind IGA-G and FEA-G. Assuming an even polynomial degree of the basis functions, we

can observe that for the error in theH1 semi-norm IGA-C is fully competitive with both IGA-

G and FEA-G with respect to the accuracy per degree of freedom. From an engineering point

of view, this can be considered a significant benefit, since critical quantities of engineering

interest are often derived from the first derivatives of the basis functions, e.g. stresses in

elasticity. In general, we observe that for the higher order cases p=4 and p=5 the IGA-C

error curves in both the L2 and H1 error norms are surprisingly close to the FEA-G curves

in the examined range of degrees of freedom.

We then turn to the results for the rough scalar and rough vector problems, whose

accuracy per degree of freedom is shown in Figs. 25, 27, 29 and 31. As predicted by theory

[101, 110], the error estimate of Eq. (35) does not hold due to the corner singularity in the

derivatives, which results in considerably lower rates of convergence in all methods. We

observe that all methods show the same asymptotic rates in the L2 and H1 error norms.

IGA-G exhibits the best accuracy per degree of freedom through almost all plots. FEA-G

always lags behind IGA-G. For the vector problem, it seems that 100,000 degrees of freedom

are not sufficient for FEA-G to reach the full asymptotic rate. In the L2 case, IGA-C

using quadratic and cubic basis functions is less accurate per degree of freedom than IGA-

G and FEA-G. In the Poisson example, however, IGA-C using quartic and quintic basis

functions is the most accurate in the L2 norm, even leaving behind IGA-G. The reason for

this phenomenon is not yet clear. With respect to the error in the H1 error norm, IGA-C

45

using quartic and quintic basis functions is competitive with FEA-G.

3.3.4. Accuracy vs. computing time

The groups of plots relating the error to the corresponding serial computing time allow

us to estimate, which of the three methods will be the fastest to achieve a specified level of

accuracy. This question is of fundamental importance and largely determines the potential

of a numerical method for the use in engineering applications. Focusing first on the results

for smooth problems shown in Figs. 18, 20, 22 and 24, we observe that if we choose an

even polynomial degree p, IGA-C is generally orders of magnitude faster than both IGA-

G and FEA-G. This is in particular true for the error in the H1 semi-norm, where the

convergence rates of IGA-C are equal to those of IGA-G and FEA-G for the case of even p.

The superiority of IGA-C is best illustrated in Fig. 24, where with p=4 IGA-C achieves an

error level of 10−5 in the H1 semi-norm in less than 20 seconds, whereas both IGA-G and

FEA-G require more than 500 seconds to reach that accuracy. Collocation loses some of its

dominance when applied with odd polynomial degrees, since the difference in convergence

rates compared with the Galerkin methods increases (see Section 3.2). This particularly

holds for p=3, where IGA-C performs worse than IGA-G and FEA-G. The reason for this

is that IGA-G and FEA-G achieve optimal rates of 4 and 3 in the L2 and H1 error norms,

while the best possible rate in IGA-C is only 2 for both cases. For p=5, this effect is

already considerably reduced, with IGA-C performing comparably with FEA-G in the L2

case and being clearly the fastest method in the H1 case. It can be expected that for odd

polynomial degrees higher than 5, IGA-C will increasingly dominate over IGA-G and FEA-

G. Comparing the results for the Poisson and elasticity problems, we note that the difference

in computing time between IGA-C and the Galerkin methods increases considerably in the

vector case. This is mainly due to the larger cost for matrix-matrix products in IGA-G and

FEA-G, while the cost of IGA-C is virtually invariant to the number of unknowns per node

(see Section 3.2 and Appendices A.2, A.3). Looking at the results for the rough problems

shown in Figs. 26, 28, 30 and 32, we observe that the situation changes with respect to the

smooth case. In general, we can say that IGA-C is fastest for the higher polynomial degrees

p=4 and 5, while IGA-G or FEA-G are faster for p=2 and 3. The pronounced difference

between even and odd polynomial degrees vanishes, since neither the Galerkin methods nor

collocation achieve optimal or best possible rates of convergence.

Figures 33a and 33b show the relative computing times spent for the formation and

assembly of the stiffness matrix and load vector, the ILU(0) preconditioning of the system

and the iterative solution with the GMRES solver in IGA-C and FEA-G. We observe that

46

p = 2

0

100

200

300

400

500

600

Formation and assembly
ILU preconditioning
GMRES solver
Total time

T
im

e
[s

ec
o
n
d
s]

p = 3 p = 4 p = 5

2 3 5 10 3 15 9 27 7 53 12 72 12 151 18 181

(a) Isogeometric collocation (IGA-C)

0

100

200

300

400

500

600

Formation and assembly
ILU preconditioning
GMRES solver
Total time

T
im

e
[s

ec
o
n
d
s]

p = 2 p = 3 p = 4 p = 5

8 17 8 33 19 73 25 117 46 162 32 240 111 408 36 555

(b) Standard C0 finite elements (FEA-G)

Figure 33: Relative timings for the formation and assembly of the stiffness matrix and load vector,
the ILU(0) preconditioning and the solution with the GMRES solver in IGA-C and FEA-G for the
solution of the smooth 3D elasticity problem with 250,000 degrees of freedom.

for IGA-C the main expense is clearly the preconditioning of the system. In FEA-G, the

relative cost of formation and assembly is higher than in IGA-C. Since the cost of the

ILU(0) preconditioner is proportional to the number of non-zero entries per row of the

stiffness matrix, the cost of preconditioning of a stiffness matrix of the same size is smaller

for IGA-C than for FEA-G.

3.3.5. From operation counts to computing times on modern multi-core machines

We believe that the superior performance of isogeometric collocation demonstrated in

Section 3.1 and 3.2 in terms of floating point operations and in Section 3.3 in terms of

timings on a single thread is only a conservative estimate of what is really possible in parallel

computations on modern multi-core machines. One important aspect is that the bottleneck

47

on modern machines lies with memory usage and access rather than flops. This is especially

true for three-dimensional discretizations of high polynomial degrees where one works with

very large element stiffness matrices. One necessarily cannot store the local stiffness matrix

on lower-level caches, and the consequence is a large proportion of cache misses and accesses

to higher levels of memory. With collocation, we completely circumvent this issue, since we

do not have element stiffness matrices. Instead, we just work with one row of such a matrix.

This drastically reduces memory usage and access when compared with Galerkin methods.

Another important aspect is the potential of collocation in terms of parallel computing, in

particular with respect to reduced parallel communication. When one assembles an element

stiffness matrix into the global system, one has to send rows of the element stiffness matrix

to the correct processor. One hopes that most of the time, the correct processor is the one

where the element stiffness matrix was computed, but it is impossible to ensure this occurs

all of the time. There will always be some matrix assembly communication cost associated

with basis functions that have “support” over multiple processors. On the other hand, with

collocation, one works with a single row and one can ensure it will be assembled into a

row on the current processor. Therefore, there is no matrix assembly communication cost

in collocation. The only communication cost one incurs with collocation is after a linear

solve when one updates the solution coefficients. Moreover, typical large-scale simulations

in computational mechanics, e.g. in the case of Newton iterations or implicit time stepping,

require a large number of solutions of systems of equations with the same matrix structure.

It is often the case that the preconditioner is computed only once at the beginning of a

time step in nonlinear cases. Due to its sparse banded form, it can be efficiently stored

for subsequent use. According to the relative timings given in Figure 33a, this significantly

reduces the overall computing time for IGA-C in all subsequent solves. In FEA-G, the

corresponding gain in efficiency is smaller, since the share of preconditioning in the total cost

is smaller than in IGA-C. In IGA-G, we expect to see almost no gain in efficiency, since the

total computing cost is completely dominated by the cost of formation and assembly, which

need to be repeated before each solve. Based on this, we anticipate that efficient parallel

implementations will put isogeometric collocation even further ahead of Galerkin methods

than shown in Figs. 17 through 32 for large systems on modern multi-core machines.

3.4. A few rules of thumb

In summary, we present the following salient observations:

1. IGA-C is more efficient for even polynomial degrees than odd polynomial degrees.

48

2. Quadratic splines seem to play the same role within spline applications that linear

finite elements have done historically in FEA-G.

3. For low order polynomial degrees, all methods seem to be equally viable.

4. IGA-C offers significant gains in efficiency compared with IGA-G and FEA-G. The

relative efficiency increases with problem complexity in the following sense:

• The gains are greater in 3D than in 2D.

• The gains are greater for vector field problems than for scalar field problems.

• The gains are greater for higher polynomial degrees.

5. In particular, higher order IGA-C (i.e., p > 3) offers the best accuracy-to-computing-

time ratios, if one is interested in displacements and stresses.

6. Collocation potentially offers significant advantages for minimizing memory storage

and access, and maximizing parallel performance.

7. IGA-C looks promising for explicit dynamics.

8. In singular problems, a globally uniform refinement strategy was adopted, which does

not produce optimal convergence rates for any method. That being the case, we

found the cost effectiveness comparable for all methods. This issue is further explored

computationally in Section 7.2 using local refinement strategies.

49

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

Original
Subdivision

Parameter space ξ

(a) Linear B-spline.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

Original
Subdivision

Parameter space ξ

(b) Quadratic B-spline.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

Original
Subdivision

Parameter space ξ

(c) Cubic B-spline.

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5

Original
Subdivision

Parameter space ξ

(d) Quartic B-spline.

Figure 34: Subdivision of a uniform coarse-scale B-spline into p+2 fine-scale B-splines of half the
knot span width, illustrated for polynomial degrees p=1 through 4.

4. Hierarchical refinement of NURBS

In the following, we briefly review B-spline subdivision and show how this concept can be

employed to set up a hierarchical scheme for local refinement of B-spline and NURBS basis

functions, which combines full analysis suitability and straightforward implementation.

4.1. Refinability of B-spline basis functions by subdivision

A remarkable property of B-splines is their natural refinement by subdivision. For a uni-

variate uniform B-spline basis function Np of polynomial degree p, the subdivision property

leads to the following two-scale relation [73, 74, 114]

Np(ξ) = 2−p

p+1
∑

j=0

(

p+ 1

j

)

Np(2ξ − j) (36)

where the binomial coefficient is defined as

(

p+ 1

j

)

=
(p+ 1)!

j! (p+ 1− j)!
(37)

In other words, a B-spline can be expressed as a linear combination of contracted, translated

and scaled copies of itself, as illustrated in Fig. 34. Note that Eq. (36) holds only for uniform

50

0 0.5 1 1.5 2 2.5 3
0.0

0.5

1.0

0 0.5 1 1.5 2 2.5 3
0.0

0.5

1.0

Parameter space ξ

Ν

ϕ

Ν

1
ϕ2

ϕ3

ϕ1

ϕ2

N: Ξ={0, 0, 1, 2}

ϕ1: Ξ={0, 0, 0.5, 1}; s1=0.5
ϕ2: Ξ={0, 0.5, 1, 1.5}; s2=0.75
ϕ3: Ξ={0.5, 1, 1.5, 2}; s3=0.25

N: Ξ={0, 0, 0, 1}

ϕ1: Ξ={0, 0, 0, 0.5}; s1=1.0
ϕ2: Ξ={0, 0, 0.5, 1}; s2=0.5

(a) Subdivision rules for non-uniform B-splines of polynomial degree p=2.

0 0.5 1 1.5 2 2.5 3
0.0

0.5

1.0

0 0.5 1 1.5 2 2.5 3
0.0

0.5

Parameter space ξ

Ν

ϕ

Ν

1 ϕ2
ϕ3

ϕ1

ϕ2

0 0.5 1 1.5 2 2.5 3
0.0

0.5

1.0

1.0

Ν

ϕ1

ϕ2 ϕ3 ϕ4

N: Ξ={0, 0, 1, 2, 3}

ϕ1: Ξ={0, 0, 0.5, 1, 1.5}; s1=0.25
ϕ2: Ξ={0, 0.5, 1, 1.5, 2}; s2=0.6875
ϕ3: Ξ={0, 0.5, 1, 1.5, 2.5}; s3=0.5
ϕ4: Ξ={0.5, 1, 1.5, 2, 3}; s4=0.125

N: Ξ={0, 0, 0, 1, 2}

ϕ1: Ξ={0, 0, 0, 0.5, 1}; s1=0.5
ϕ2: Ξ={0, 0, 0.5, 1, 1.5}; s2=0.75
ϕ3: Ξ={0, 0.5, 1, 1.5, 2}; s3=0.1825

N: Ξ={0, 0, 0, 0, 1}

ϕ1: Ξ={0, 0, 0, 0, 0.5}; s1=1.0
ϕ2: Ξ={0, 0, 0, 0.5, 1}; s2=0.5

(b) Subdivision rules for non-uniform B-splines of polynomial degree p=3.

Figure 35: Subdivision for quadratic and cubic B-splines resulting from open knot vectors. The
symbols N , ϕi and si are used in the sense of the generalized subdivision rule Eq. (38).

B-splines with distinct knots. For the case of non-uniform B-splines with repeated knots,

we generalize Eq. (36) as

N =
∑

i

ϕi si (38)

The original B-spline function N is split into several new B-splines ϕi. These are multiplied

by corresponding scaling factors si so that the generalized subdivision rule Eq. (38) holds.

Corresponding knot vectors and scaling factors can be found in the literature [115, 116]

or can be simply constructed by inspection on the basis of Eq. (38). In this work, we

51

(a) Contracted, translated and scaled B-splines. (b) Cut along ξ=2.0.

Figure 36: Subdivision of the bivariate cubic B-spline shown in Fig. 2.

use non-uniform subdivision to hierarchically refine boundary functions of a B-spline basis

constructed from open knots vectors. Corresponding rules are given in Figs. 35a and 35b in

terms of hierarchical functions, knot vectors and scaling factors for the two most common

cases of p=2 and p=3, respectively.

Due to their tensor product structure, the generalization of subdivision to multivariate

B-splines is a straightforward extension of Eqs. (36) and (38) and can be written in the

uniform case as

Bp (ξ) =
∑

j

(

d
∏

ℓ=1

2−pℓ

(

pℓ + 1

jℓ

)

Npℓ(2ξ
ℓ − jℓ)

)

(39)

Following Section 2.1.2, multi-indices j={j1, . . . , jdp}, p={p1, . . . , pdp} and ξ={ξ1, . . . , ξdp}

denote the position in the tensor product structure, the polynomial degree and the indepen-

dent variables in each direction ℓ of the dp-dimensional parameter space. Fig. 36 illustrates

the new basis functions resulting from the multivariate two-scale relation Eq. (39) applied to

the bivariate cubic B-spline of Fig. 2b. Analogous to Eq. (38), a generalization of Eq. (39)

for non-uniform multi-variate B-splines may be easily constructed. The most widely known

application of Eqs. (36), (38) and (39) is the development of highly efficient subdivision

algorithms for the fast and accurate approximation of smooth surfaces by control meshes in

computer graphics [73, 74, 115, 116].

52

0 1 2 3 4 5 6
0.0

0.5

1.0

0 1 2 3 4 5 6
0.0

0.5

1.0

Parameter space ξ

Knot span to be refined

Original patch

Refinement (overlay)

(a) Hierarchical refinement, inspired by the hp-d adaptive approach [68]. The combination of the
original patch and three contracted B-splines yields the refined basis.

0 1 2 3 4 5 6
0.0

0.5

1.0

0 1 2 3 4 5 6
0.0

0.5

1.0

Parameter space ξ

Knot spans to be refined

Original patch

Refinement (overlay)

(b) Hierarchical refinement in the sense of the hp-d adaptive approach for the three rightmost knot
span elements in a row. The overlay is generated by repeating the nucleus operation of Fig. 37a.

Figure 37: Two-level hierarchical refinement of a one-dimensional cubic B-spline patch.

4.2. Construction of adaptive hierarchical approximation spaces

In the following, we will review a hierarchical scheme for local refinement of B-splines

in one dimension, which combines concepts from B-spline subdivision, the hp-d adaptive

approach [68, 117–119] and existing hierarchical refinement techniques for B-spline finite

elements [69, 120–122] and standard nodal based FEA [123, 124]. We refer to our previ-

ous work in [70] for a more detailed presentation including an overview of corresponding

algorithms.

4.2.1. Two-level hierarchical refinement for one element

As a first step, we define a nucleus operation, i.e. the refinement of one knot span element.

Figure 37a exhibits a portion of a B-spline patch, where the element in the center is to be

refined. We borrow the main idea of the hp-d adaptive approach, which was originally

53

Knot spans to be refined

0 1 2 3 4 5 6
0.0

0.5

1.0

0 1 2 3 4 5 6
0.0

0.5

1.0

0 1 2 3 4 5 6
0.0

0.5

1.0

0 1 2 3 4 5 6
0.0

0.5

1.0

Level k = 0

Level k = 1

Level k = 2

Level k = 3

Parameter space ξ

Figure 38: Hierarchical multi-level refinement: B-splines of level k plotted in dotted line can be
represented by a linear combination of B-splines of the next level k+1 according to the two-scale
relation Eq. (36) and therefore need to be removed from the basis.

introduced for the p-version of the FEM [118, 119] and successfully applied to B-spline bases

in [68, 117]. In an hp-d sense, we add an overlay of three fine-scale B-splines of contracted

knot span width to the original B-spline basis. At this point, no changes in the original

coarse-scale basis functions are required, since we can infer from Eq. (36) that single fine-

scale B-splines of contracted knot span width are linearly independent with respect to the

original B-splines of full knot span width. The resulting basis is the combination of coarse-

scale and fine-scale B-splines. In Fig. 37a, original and overlay basis functions are plotted

on separate levels, which reflects the two-level hierarchy between the original basis and its

refinement overlay. Furthermore, we do not change the amplitude of fine-scale B-splines,

thus ignoring the presence of scaling factors si in Eq. (38).

4.2.2. Two-level hierarchical refinement for several elements

Let us proceed one step further to the refinement of several knot span elements in a row.

Figure 37b illustrates the two-level hierarchical basis, which results from a repetition of the

nucleus operation illustrated in Fig. 37a for the three rightmost elements in the patch. In

particular, this procedure does not affect the higher-order smoothness of the refined basis,

since the first p− 1 derivatives of the hierarchical B-spline basis functions are zero at their

54

support boundaries. The specific refinement rule of Fig. 37a is valid for polynomial degree

p=3, but can be easily transferred to B-spline bases of other polynomial degrees by looking

for the minimum number of fine-scale B-splines per element, with which a complete row of

fine-scale B-splines in the overlay level can be achieved, when several elements are refined.

4.2.3. Multi-level hierarchical refinement

In order to increase the degree of local refinement, we proceed from the two-level hierarchy

of a single refinement step to a general multi-level hierarchy, consisting of several overlay

levels. Let us introduce the level counter k, where k=0 denotes the original B-spline patch.

In each refinement step, the nucleus operation is applied to elements of the currently finest

level k to produce a new overlay level k+1. Finer-scale B-splines of the new level k+1 are

found by bisecting the knot span width with respect to level k. The multi-level refinement

procedure is illustrated in Fig. 38, where the nucleus operation is successively applied to

the three rightmost knot span elements of each level k. The resulting grid consists of a

nested sequence of bisected knot span elements, and multiple hierarchical overlay levels of

repeatedly contracted uniform B-splines. Note that for the refinement of boundary functions,

the fine-scale B-splines are chosen according to the rules of Fig. 35b.

4.2.4. Recovering linear independence

In order to guarantee full analysis suitability of the hierarchically refined B-spline basis,

we have to ensure its linear independence. Comparing the different levels in the hierarchy

of Fig. 38, one can immediately observe that each overlay level k+1 consists of more than

p+2 consecutive fine-scale B-splines. As a consequence, their linear combination is capable

of representing some of the B-spline basis functions of the previous level k according to

the two-scale relation Eq. (36). Therefore, we need to identify all B-spline basis functions

that are a combination of fine-scale B-spline basis functions of the next level k+1 and

remove them from the hierarchical basis. Furthermore, we need to ensure that any sequence

of contracted B-splines on consecutive fine-scale knot spans is complete (see [70] for an

instructive example). In Fig. 38, basis functions to be taken out are shown as dotted lines,

while the final linear independent hierarchical B-spline basis consists of all basis functions

shown as solid lines.

4.3. Generalization to multiple dimensions

The tensor product structure of multivariate B-splines permits a straightforward gen-

eralization of the one-dimensional hierarchical refinement concept presented in Section 4.2

55

Sharp internal
layer

(a) System
sketch.

(b) Hierarchical mesh.

k=0

k=1

k=2

k=3

(c) Multi-level structure of
hierarchically contracted knot
spans.

Figure 39: Multi-level hierarchical refinement of a quadratic B-spline patch along an internal layer.

to multiple dimensions. In Fig. 39a, multivariate hierarchical refinement is illustrated for

a bivariate quadratic B-spline patch, which is to be refined along its diagonal. Figure 39b

shows the hierarchical mesh, which represents the global element structure. The correspond-

ing multi-level knot spans, over which the hierarchical B-splines are defined, are illustrated

in Fig. 39c. Note that for all higher levels the knot spans along the diagonal are empty,

since all basis functions defined therein have been removed from the basis to preserve linear

independence. In the collocation method, Dirichlet boundary conditions need to be imposed

strongly. In 2D and 3D, non-zero Dirichlet boundary conditions can often be imposed eas-

ily, if the B-spline basis satisfies partition of unity at the Dirichlet boundary. This can be

accomplished by keeping track of the scaling factors si of Eq. (38) during the refinement

process [69] (see also Fig. 35). The strong imposition of complex functions can be achieved

by a least squares fit of boundary basis functions [2, 125].

56

4.4. Generalization to NURBS

We derive subdivision rules for multivariate NURBS by inserting the two-scale relation

of Eq. (39) into the construction rule for NURBS basis functions Eq. (8), which yields

Rh
i,p (ξ) =

wi

∑

j

(

∏d

ℓ=1 2
−pℓ
(

pℓ+1

jℓ

)

Npℓ(2ξ
ℓ − jℓ)

)

∑

j wjBj,p(ξ)
(40)

where the multi-index notation exactly follows the one introduced in Section 2.1.2 for multi-

variate B-splines. To efficiently accommodate NURBS in the hierarchical refinement process,

we first separate Eq. (40) in a B-spline part (numerator) and a rational part (denominator),

which we treat separately. In the numerator, we perform hierarchical refinement on the

B-spline level, making full use of the concepts discussed in the previous paragraphs.

According to the isogeometric paradigm [1, 2], the geometry is described exactly by

the original unrefined NURBS basis, so that geometry refinement is normally not required.

Therefore, the denominator of Eq. (40) can always be computed with the original B-spline

basis B0
j,p(ξ)

sum(ξ) =
∑

j

wjB
0
j,p(ξ) (41)

where wj and P j are the initial set of weights and control points. Note that we can addition-

ally drop the weights wi in the numerator of Eq. (40) for further simplification. Furthermore,

the geometry mapping is computed throughout the hierarchical refinement procedure from

the original unrefined NURBS basis

x(ξ) =
∑

j

wjB
0
j,p(ξ)

sum(ξ)
P j (42)

Nonetheless, using the refined NURBS basis for enhancing the geometry representation

would be of course possible [126, 127].

4.5. Efficient implementation of hierarchical refinement

A considerable advantage of hierarchical refinement in the present form is its straight-

forward and efficient implementation through quadtrees and octrees [75], which provide a

natural way to decompose and organize spatial data according to different levels of com-

plexity and offer fast access to relevant parts of a dataset [76, 77]. The quadtree concept

shown in Fig. 40 illustrates the analogy between an adaptive hierarchical quadrilateral mesh

and the two-dimensional tree. The tree is the fundamental entity, where each node or

57

Mesh in
parameter space

k=0

k=1

k=2

k=3

Connect neighbors by pointers

Tree node: Quadrisected knot spans of level k < 3

Tree leaf: Unpartitioned knot spans of level k < 3

Tree leaf: Knot span of deepest level k = 3

Figure 40: Quadtree example illustrating the hierarchical data organization of part of an adaptive
mesh. The neighboring relations within each hierarchical level are established by pointers, which are
shown here for one element of the finest level (in red color).

leaf holds all the information of the corresponding knot span on the respective hierarchical

level. Additionally, each node or leaf can be equipped with pointers that connect it with

all direct neighbors of the same hierarchical level (see Fig. 40), so that “horizontal” neigh-

boring relations can be frequently checked with little computational effort. More details on

implementation aspects and related algorithms can be found in [70].

In this context, we would like to point out that a different implementation approach has

been recently proposed in [72], which is largely based on subdivision related concepts and al-

gorithms developed in CAGD [73, 74, 115, 116]. The discrete interpretation of the two-scale

relation is used to establish algebraic relations between the basis functions and their coeffi-

cients on different levels of the hierarchical mesh, which give rise to a subdivision projection

technique. First, local element matrices and vectors are computed on a single level, using a

fixed number of basis functions. During the subsequent assembly step, multiplication with

subdivision matrices projects them to the correct levels of the hierarchical B-spline basis.

Conceptually, subdivision projection is very similar to Bézier extraction [39, 40] and permits

the integration of hierarchical B-splines into conventional finite element codes.

5. The concept of weighted isogeometric collocation

In the following, we first motivate the need for an isogeometric collocation scheme that

can handle coincident collocation points on different levels of a hierarchical NURBS mesh.

Subsequently, we derive the concept of weighted isogeometric collocation in a variational con-

text and demonstrate its validity and numerical properties for standard single level NURBS

58

patches in one dimension.

5.1. Motivation

We first attempt a straightforward combination of isogeometric collocation and hier-

archical refinement of NURBS. Figure 41a shows a two-level cubic B-spline patch in one

dimension. The corresponding collocation points are the Greville abscissae determined from

the knot vector on each hierarchical level, which are shown along with the basis functions.

Also in a hierarchical basis, the Greville abscissae automatically leads to the optimal number

of collocation points, i.e. one point per basis function. However, two collocation points are

coincident in the transition region, where the coarse and fine-scale basis functions overlap.

Since each point evaluation results in a specific collocation equation according to Eqs. (17)

through (19), two coincident points will produce the same equation, leading to a linearly

dependent system. Figure 41b shows a two-level quartic B-spline patch, for which the collo-

cation points based on the Greville abscissae of each hierarchical level are unique. However,

these collocation points are not properly graded in regions, where basis functions of different

hierarchical levels overlap. Numerical experiments reveal that this basis works for diffusion

dominated problems, but becomes unstable for Péclet numbers higher than 50, which is at-

tributed to the non-uniform accumulation of collocation points. For hierarchical refinement

in the framework of the Galerkin method (see for example [69, 70, 122]), these problems

do not occur. Each basis function is evaluated at several quadrature points, so that linear

independence is properly reflected in the system. The problem of linear dependence in the

context of hierarchical refinement and collocation can thus be interpreted as a lack of eval-

uation points in the transition regions, which leads to a loss of information concerning the

hierarchical basis.

5.2. Variational background

Putting the issue of hierarchical refinement aside for a moment, we introduce the concept

of weighted isogeometric collocation in a variational context. The basic idea of the modified

collocation scheme is to achieve a compromise between the one point evaluation of standard

collocation and the large number of point evaluations per basis function required by full

Gauss quadrature of the integrals in the Galerkin method.

Weighted collocation in general can be derived by running through the same process as

outlined for the standard scheme in Eqs. (12) through (19). The basis for its variational

formulation is again the weighted residual form of the boundary value problem, Eq. (12),

where the approximation of the solution field is achieved by Eq. (11). In contrast to standard

59

0 1 2 3 4 5 6
0

1

0 2 3 4.5 5 6
0

1

2.5 3.51 5.54

Coarse-scale

Fine-scale

(a) Cubic two-level patch: Coincident collocation points in the transition region.

0 1 2 3 4 5 6

1

0 2 3 4.5 5 6
0

1

2.5 3.51 5.54

Coarse-scale

Fine-scale

(b) Quartic two-level patch: Accumulation of collocation points in the transition region.

Figure 41: Straightforward combination of hierarchical refinement and multi-level Greville abscissae.

collocation, the summands of the test functions ωΩ and ωΓ are not chosen as individual Dirac

δ functions, evaluated at one specific collocation point, but as sums of several weighted Dirac

δ functions, evaluated at several collocation points

ωΩ =
k
∑

i=1

(

∑

a

δ(x− xi) αa

)

ĉi (43)

ωΓ =
n
∑

i=k+1

(

∑

a

δ(x− xi) αa

)

ĉi (44)

where αa is an individual weighting factor for each Dirac δ function.

Substitution of Eqs. (43) and (44) into the weak form of Eq. (12) again eliminates the

60

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fine-scale

Coarse-scale

α = 0.251

α = 0.752 α = 0.753

α = 0.254

Figure 42: The set of weighted collocation points and weighting factors αa for a quadratic uniform
B-spline.

integrals using the sifting property Eqs. (13) and (14) of the Dirac δ functions, and yields

k
∑

i=1

ĉi
∑

a

αa

(

L
[

uD(xi) +
k
∑

j=1

Nj(xi) cj
]

− f(xi)
)

+

n
∑

i=k+1

ĉi
∑

a

αa

(

ni ·D
n
∑

j=k+1

∇Nj(xi) cj − h(xi)
)

= 0 (45)

Following from Eq. (45), the elements of system matrix K and load vector F are defined as

Kij =











∑

a αa

[

L

(

Nj(xi)
)]

, for 1 ≤ i ≤ k

∑

a αa

[

ni ·D∇Nj(xi)
]

, for k + 1 ≤ i ≤ n
(46)

Fi =











−
∑

a αa

[

L

(

uD(xi)
)

+ f(xi)
]

, for 1 ≤ i ≤ k

−
∑

a αa

[

ni ·D∇uD(xi) + h(xi)
]

, for k + 1 ≤ i ≤ n
(47)

A comparison of Eqs. (46) and (47) with Eqs. (18) and (19) confirms the interpretation

of the current scheme as “weighted collocation”, since the current entries can be derived

by summing up the entries of the standard collocation matrix and vector, multiplied by a

weighting factor αa.

61

5.3. Collocating at the fine-scale Greville abscissae

In addition to using NURBS basis functions within the framework of the weighted collo-

cation method, we need to come up with a suitable set of collocation points. In our opinion,

a natural choice is the Greville abscissae generated from the fine-scale knot vector, obtained

from a hierarchical split of the complete coarse-scale basis according to the two-scale relation

Eq. (36). This choice combines a range of important advantages. First, the use of Greville

abscissae as collocation points is in line with current practice in IGA collocation [51, 52].

In particular, they can be generated easily across hierarchical levels, and it is confirmed

below that the crucial properties of best possible convergence and stability also transfer to

weighted collocation. Second, considering its split in the sense of the two-scale relation,

each coarse-scale basis function can be assigned to a clearly defined group of collocation

points. This is illustrated in Fig. 42 for a uniform quadratic B-spline. Moreover, the split

of the coarse-scale basis involves the scaling of the corresponding fine-scale basis functions

(see Eqs. (36), (39) and Fig. 42), which gives rise to a natural choice of weighting factors

αa. Note that for boundary basis functions based on non-uniform B-splines, the generalized

subdivision rule of Eq. (38) applies (see also Fig. 35). Finally, we anticipate here that the

specific choice of collocation points based on the fine-scale Greville abscissae will be most

useful, when accommodating hierarchical refinement in the weighted collocation concept.

The complete set of weighted collocation points is illustrated for a 1D quadratic B-spline

patch in Fig. 43. The coloring clearly indicates the assignment of each group of collocation

points to a specific coarse-scale basis function. In addition, we compare the collocation

points of the weighting scheme to the standard collocation points derived from the Greville

abscissae of the coarse-scale basis and to the quadrature points required for full integration

in the Galerkin method. For the present example, we count 14 weighted collocation points

as compared to eight standard collocation points and 18 quadrature points in the Galerkin

method, which reflects the compromise between the two original approaches. It should

be noted that coincident collocation points of the fine-scale Greville abscissae need to be

evaluated only once and can then be assembled to the different equations after multiplication

with the corresponding weighting factor. Hence, coincident points in the weighting scheme

count as one point evaluation only. It should also be noted that in this example we do not

mix interior and boundary test functions, and the boundary basis functions in 1D are not

weighted (see Fig. 43).

62

0 1 2 3 4 5 6
0

1

Quadrature points

(Galerkin)

Greville abscissa

(Collocation)

Fine-scale

Greville abscissa

(Weighted collocation)

Quadratic NURBS

basis functions

Figure 43: Quadrature/collocation points for Galerkin, standard and weighted collocation methods
in a quadratic single-level B-spline patch.

5.4. A simple model problem in 1D

In the following, we test the weighted collocation method for single level B-spline patches

in one dimension and explore its numerical properties, in particular best possible convergence

rates and stability. As a test bed, we use the standard steady advection-diffusion equation

and the following Dirichlet boundary conditions

Pe
∂u

∂x
− L

∂2u

∂x2
= 0 (48a)

u(x = 0) = 0; u(x = L) = 1 (48b)

Its solution characteristics are governed by the global Péclet number Pe = aL/D, where

parameters a, D and L are the velocity, the diffusion coefficient and the length of the

domain, respectively. For increasing Pe, the exponential boundary layer at the right hand

end of the domain steepens. An in-depth discussion of this problem and its exact solution

can be found in [128, 129].

For the case of a moderate Péclet number Pe=10, the plots of Figs. 44 and 45 com-

pare the rates of convergence of the error in the L2 norm and H1 semi-norm, obtained

with weighted collocation, standard collocation and Galerkin for even polynomial degrees

(quadratic, quartic) and odd polynomial degrees (cubic, quintic), respectively. The different

methods use the same B-spline basis that is uniformly refined over the complete domain,

and imply a change of point evaluations as shown in Fig. 43. The following observations

can be made: The rates of convergence in L2 and H1 achieve the best possible rates in both

collocation schemes (O(p) for even p, O(p − 1) for odd p). Weighted collocation seems to

63

8 16 32 64 128 256
10

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

degrees of freedom

R
el

at
iv

e
er

ro
r

in
 L

n

o
rm

Collocation
Weighted coll. p=2
Galerkin
Collocation
Weighted coll. p=4
Galerkin

-14

2 1
2

1
4

1
5

1
3

(a) Error in L2.

8 16 32 64 128 256
10

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

degrees of freedom

R
el

at
iv

e
er

ro
r

in
 H

se

m
in

o
rm

Collocation
Weighted coll. p=2
Galerkin
Collocation
Weighted coll. p=4
Galerkin

-14

1

1
2

1
4

(b) Error in H1.

Figure 44: Weighted collocation: Convergence for uniform h-refinement of quadratic and quartic
B-splines.

8 16 32 64 128 256
10

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

degrees of freedom

R
el

at
iv

e
er

ro
r

in
 L

n

o
rm

Collocation
Weighted coll. p=3
Galerkin
Collocation
Weighted coll. p=5
Galerkin

-14

2 1
2

1
4

1

6

(a) Error in L2.

8 16 32 64 128 256
10

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

degrees of freedom

R
el

at
iv

e
er

ro
r

in
 H

se

m
in

o
rm

Collocation
Weighted coll. p=3
Galerkin
Collocation
Weighted coll. p=5
Galerkin

-14

1

1
2

1
4

1
5

1
3

(b) Error in H1.

Figure 45: Weighted collocation: Convergence for uniform h-refinement of cubic and quintic B-
splines.

involve a lower error constant C (see Eq. (35)), which decreases the error level in comparison

to standard collocation. However, it does not achieve an improvement of convergence rates

over standard collocation, although the fact that weighted collocation passes more infor-

mation to the system matrix might have raised some hope in that direction. Furthermore,

the equivalence of convergence rates obtained with collocation and Galerkin in H1 for even

polynomial degrees becomes evident in Fig. 44b, where the convergence curves of weighted

collocation and Galerkin coincide. For L2 and odd polynomial degrees, Galerkin converges

64

0.0 1/4 L 1/2 L L

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

degrees of freedom

S
o

lu
ti

o
n

 f
ie

ld
 u

6 elements
24 elements
96 elements

-0.4
3/4 L

(a) Solution field u computed with quartic B-
splines on different uniform meshes.

8 16 32 64 128 512

10
-1

10
0

10
1

10
2

degrees of freedom

R
el

at
iv

e
er

ro
r

in
 H

se

m
i-

n
o

rm

1

10
-2

256

p=4

(b) Corresponding convergence of the error in
H1 semi-norm (quartic B-splines).

Figure 46: Advection dominated problem (Pe = 500): Weighted isogeometric collocation leads to
oscillations that vanish as soon as the basis is refined enough to capture the boundary layer. Note that
no upwinding or stabilization was used for these computations.

at a higher rate than both collocation schemes.

We also tested the stability of weighted isogeometric collocation. To this end, we raised

the Péclet number Pe in steps of one order of magnitude from zero (pure diffusion) to 1,000

(strong advection domination) and varied the polynomial degree p from quadratics to degree

eight. For all resulting combinations of Pe and p, we did not encounter any unstable solution

behavior. However, we observed an oscillatory behavior for the case of advection domination,

which disappeared when the basis was refined enough to capture the boundary layer on the

right hand end (see the example given in Fig. 46). The issue of oscillations for high Péclet

numbers is well known for standard Galerkin discretizations, and is usually addressed by

consistent stabilization techniques [129, 130]. In the framework of isogeometric collocation,

we performed some initial tests of collocation-point upwinding, for which a brief discussion

and examples in 2D are given in Appendix B.

6. Adaptive isogeometric collocation in one dimension

As shown in the previous section, weighted isogeometric collocation using the fine-scale

Greville abscissae as collocation points is stable and converges with the best possible rate.

Moreover, it allows coincident collocation points, which is essential for the use of several

levels of hierarchically refined NURBS basis functions. However, it requires more point

65

evaluations than standard IGA collocation, which lessens the advantage of collocation in

terms of computational efficiency.

6.1. Standard and weighted collocation across a hierarchy of meshes

A resolution of this dilemma is a combination of standard isogeometric collocation,

weighted collocation and hierarchical refinement of NURBS, performed in such a way that

all relevant advantages can be maintained. Our basic idea, which we simply refer to in the

following as adaptive isogeometric collocation, goes as follows:

Adaptive isogeometric collocation:

• Use hierarchical refinement of NURBS to establish an analysis suitable basis that

adaptively resolves local features of the problem.

• Use collocation for each basis function, whose coarse-scale collocation point is lo-

cated within or on the boundary of a knot span, which does not overlap with ba-

sis functions of finer-scale hierarchical levels. Overlapping with basis functions of

coarser scales is allowed. The corresponding collocation point is derived from the

Greville abscissae of the current hierarchical level k, where the basis function is

defined.

• Use weighted collocation for each basis function, whose coarse-scale collocation point

is located within a knot span that overlaps with basis functions of finer-scale hier-

archical levels. The corresponding group of collocation points is derived from the

fine-scale Greville abscissae of the next hierarchical level k+1.

On the one hand, the application of the weighted collocation scheme in regions where

basis functions of different hierarchical levels overlap allows coincident collocation points

across hierarchical levels and thus avoids linear dependencies in the system matrix that

occurred in the standard scheme (see Section 5.1). On the other hand, the application of

the standard collocation scheme in single-level regions, which can be expected to cover the

majority of the domain, effectively limits the number of point evaluations and thus preserves

the fundamental advantage of collocation. Moreover, this strategy is consistent in the sense

that it is generally valid irrespective of the polynomial degree and that it applies to any

configuration of hierarchical levels. Furthermore, collocation points can be generated easily

and implemented seamlessly within hierarchical refinement routines.

66

0 1 2 3 4 5 6
0

1

Level k=0:

Level k=1:

Level k=2:

0

1

0

1

Figure 47: Adaptive isogeometric collocation for a two-level quadratic B-spline patch.

The idea of the restriction of weighted collocation to basis functions whose collocation

points are located in regions of overlapping hierarchical levels is illustrated in Fig. 47 for

a one dimensional multi-level patch of quadratic B-splines. The color of the collocation

points indicates the group of B-splines to which they are assigned. Blue, purple and green

collocation points correspond to the Greville abscissae of the current scale k, while red and

orange points correspond to the Greville abscissae of the next finer scale k+1 according to

the weighted collocation concept.

6.2. Truncation of weighted collocation points

The method of adaptive isogeometric collocation can be further simplified by considering

the concept of a truncated hierarchical basis, which was recently introduced by Giannelli

et al. [78]. The truncation of a hierarchical B-spline basis recognizes that some fine-scale

basis functions of level k are contained implicitly in some B-spline basis function of coarser

scales, and eliminates them by subtracting finer-scale from coarser-scale basis functions.

From a mathematical point of view, this procedure corresponds to a normalization of the

hierarchical basis.

For the present example of the one-dimensional hierarchical B-spline patch in Fig. 47,

truncation can be illustrated as follows. We focus on the red basis function shown in Fig. 47

on level k=0 and its subdivision split into fine-scale B-splines, which are separately plotted

in Fig. 48. As a consequence of the two scale relation Eq. (36), the two first basis functions

of the next hierarchical level k=1 are equivalent to two fine-scale B-splines of the red basis

67

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fine-scale B-splines:

Coarse-scale B-spline:

Original
Truncated

Not part of
next level

Part of next
level (removed)

Active

Inactive

Collocation points:

Figure 48: Consider the hierarchical split of a coarse-scale B-spline (dotted red) located in the
transition region between hierarchical levels. According to the concept of truncated B-splines, we can
remove all fine-scale functions that are also part of the next refinement level (dotted purple). Adding
the remaining functions yields the truncated B-spline of the current level (bold red). As a consequence,
we also remove the corresponding collocation points in the weighted collocation scheme (empty circles).

function shown in Fig. 48. The multiplicity of B-splines on the two neighboring levels can

be removed by subtracting the two fine-scale B-splines from the coarse-scale red function.

Recalling that the choice of weighted collocation points is motivated by the fine-scale Greville

abscissae (see Fig. 42), we immediately see that the number of weighted collocation points for

the truncated basis function of Fig. 48 naturally decreases as a consequence of the removal of

fine-scale B-splines. Thus, in analogy to the truncation of a basis function, the corresponding

set of weighted collocation points can also be truncated.

Replacing original basis functions of a hierarchical basis by their truncated counterparts

leads to a normalization of the hierarchical basis with increased sparsity and better con-

ditioning of the corresponding system matrix [70, 78]. However, the normalized basis still

spans the same space as the set of original basis functions and thus maintains exactly the

same approximation power. We can therefore argue here that groups of weighted collocation

points can be reduced according to a possible truncation, no matter whether we truncate the

corresponding basis function in the hierarchical basis or not. This is illustrated in Fig. 47,

where the white collocation points have been truncated, although the basis functions remain

the original B-splines. It should be noted that the concept of truncation constitutes a sim-

plification of the adaptive IGA collocation, but does not affect its efficiency in terms of the

number of point evaluations, since each truncated point corresponds to a coincident point

on the next hierarchical level k+1.

68

8 16 32 64 128 512

10

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

degrees of freedom

R
el

at
iv

e
er

ro
r

in
 L

n

o
rm

Uniform
Adaptive

Uniform
Adaptive

-5

2

10
-6

256

p=2

p=4

(a) Error in L2.

8 16 32 64 128 512

10

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

degrees of freedom

R
el

at
iv

e
er

ro
r

in
 H

se

m
in

o
rm

Uniform
Adaptive

Uniform
Adaptive

-5

1

10
-6

256

p=2

p=4

(b) Error in H1.

Figure 49: Adaptive isogeometric collocation: Convergence of quadratic and quartic B-splines.

8 16 32 64 128 512

10

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

degrees of freedom

R
el

at
iv

e
er

ro
r

in
 L

n

o
rm

Uniform
Adaptive

Uniform
Adaptive

-5

2

10
-6

256

p=3

p=5

(a) Error in L2.

8 16 32 64 128 512

10

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

degrees of freedom

R
el

at
iv

e
er

ro
r

in
 H

se

m
in

o
rm

Uniform
Adaptive

Uniform
Adaptive

-5

1

10
-6

256

p=3

p=5

(b) Error in H1.

Figure 50: Adaptive isogeometric collocation: Convergence of cubic and quintic B-splines.

6.3. A simple model problem in 1D revisited

We test the efficiency of adaptive isogeometric collocation with the 1D steady advection-

diffusion problem discussed in Section 5.4. A Péclet number of Pe=150 leads to a boundary

layer at the right hand end of the 1D domain, which involves a very high gradient. We use

a sequence of hierarchical bases in the sense of Fig. 47 to obtain an accurate solution. In

each refinement step, we generate an additional hierarchical level by a bisection of the four

rightmost elements. Figures 49 and 50 show the corresponding convergence of the error in

the L2 norm and H1 semi-norm, as obtained with hierarchical B-splines of even polynomial

69

0.0 1/4 L 1/2 L L
-1.5

1.0

-0.5

0.0

0.5

1.0

1.5

degrees of freedom

S
o

lu
ti

o
n

 f
ie

ld
 u

3/4 L

Exact solution
Single point collocation
Weighted collocation

(a) Solution u of the advection-diffusion test
problem with Pe=150 (5 refinement levels).

8 10 14 512
10

-4

10
-3

10
-2

10
-1

10
0

10
1

degrees of freedom

R
el

at
iv

e
er

ro
r

in
 H

se

m
i-

n
o

rm

1

20

Single point collocation

Weighted collocation
p=4

(b) Convergence in H1 obtained by increasing
the number of refinement levels.

Figure 51: Adaptive isogeometric collocation with quartic B-splines and 5 refinement levels, using
single collocation points (see Fig. 41b) and weighted collocation points in the transition regions of
hierarchical levels.

degree (quadratic, quartic) and odd polynomial degree (cubic, quintic), respectively. Fur-

thermore, they show the convergence obtained by uniform h-refinement of the corresponding

B-spline patch that is based on a bisection of all elements over the complete domain in each

refinement step. It can be observed that due to the local resolution of the boundary layer,

adaptive isogeometric collocation achieves rates of convergence, which are far higher than

those of uniform refinement. To arrive at the final error level in both the L2 and H1 cases,

the hierarchical bases require about one order of magnitude fewer degrees of freedom than

uniform h-refinement. After several adaptive refinement steps, the largest part of the error

does not stem from the excessively refined right boundary anymore, so that the convergence

rates of the adaptive solutions level off.

We also use the present advection-diffusion example with Pe=150 to compare the current

adaptive collocation scheme based on weighted collocation to an adaptive collocation scheme

that uses single collocation points in the transition regions between hierarchical levels. We

discussed in Section 5.1 that the former is possible with multi-level Greville abscissae for B-

splines of even polynomial degree, but leads to the accumulation of collocation points in the

transition regions (see Fig. 41b). Figure 51 illustrates the corresponding solution behavior

for a multi-level hierarchical B-spline basis of p=4. We observe that adaptive collocation

based on single collocation points is unstable and converges to a solution that is very different

from the analytical solution. Adaptive collocation based on weighted collocation points is

70

0 5 10 15 20 25
1.0

2.0

3.0

4.0

5.0

6.0

hierarchical levels

#
 p

o
in

t
ev

al
u

at
io

n
s

/
#

 c
o

n
tr

o
l

p
o

in
ts

p=4
p=2

p=3

p=5

(a) Adaptive IGA collocation.

0 5 10 15 20 25
1.0

3.0

4.0

5.0

6.0

hierarchical levels

#
 p

o
in

t
ev

al
u

at
io

n
s

/
#

 c
o

n
tr

o
l

p
o

in
ts

p=4

p=2

p=3

p=5

2.0

(b) Galerkin (Gauss quadrature).

Figure 52: Computational efficiency in terms of reff, i.e. the number of point evaluations per control
point, for a one-dimensional hierarchical basis, constructed in the sense of Fig. 47.

stable and converges to the analytical solution.

6.4. Computational efficiency in 1D

The key motivation for the use of isogeometric collocation is its interpretation as a

stable higher-order one-point quadrature scheme, which requires only one point evaluation

per control point (i.e. node) [51, 52]. A suitable measure for the computational efficiency of

a method in this sense is the ratio of the number of evaluations at quadrature or collocation

points ñ over the number of control points ncp in the system

reff =
ñ

ncp

(49)

Standard IGA collocation is optimal, since it automatically leads to the minimum of reff=1.0.

In adaptive isogeometric collocation, the ratio is larger than the optimum due to the use of

weighted collocation. However, only a few basis functions are affected due to its restriction

to the transition regions between hierarchical levels, so that reff always remains very close

to the optimum of one. With respect to a Galerkin method, adaptive isogeometric collo-

cation can still be characterized as a one-point quadrature scheme, whose computational

cost in terms of point evaluations is considerably smaller than in a corresponding Galerkin

scheme. Moreover, we have seen in Section 3.1 that the cost of one quadrature point in a

Galerkin method is considerably larger than the cost of one collocation point. With respect

to standard IGA collocation, we expect that the resolution of local features of adaptive IGA

71

collocation leads to a sizable increase in the overall computational efficiency, in particular

for large problems in two and three dimensions, which by far exceeds the little extra cost

indicated by the slight deviation from the optimum reff=1.0.

We illustrate this statement by comparing the cost of point evaluations per control

point for analysis with the hierarchically refined B-spline patch of Fig. 47. We consider

adaptive IGA collocation and a Galerkin method [70] that uses full Gauss quadrature in

each knot span. Figures 52a and 52b plot the ratio reff of Eq. (49) with increasing number

of hierarchical levels for adaptive IGA collocation and Galerkin, respectively. The results

confirm our initial argument. Despite the additional points due to weighted collocation in the

transition regions between hierarchical levels, the ratio reff for adaptive IGA collocation stays

close to the optimum of one throughout all polynomial degrees p considered. In particular,

it is considerably lower than the corresponding reff of full Gauss quadrature required by

the Galerkin method. Note that the partial coincidence of coarse- and fine-scale collocation

points of neighboring levels for odd polynomial degrees p leads to better ratios in comparison

to even p, where the set of coarse- and fine-scale collocation points are completely distinct.

7. Adaptive isogeometric collocation in two and three dimensions

In the following, we demonstrate that the concept of adaptive isogeometric collocation

that has been presented in the previous sections for the 1D case works equivalently well

in higher dimensions. To this end, we examine 2D elliptic problems with smooth and

rough solutions as well as advection-diffusion benchmarks in 2D and 3D. The results confirm

that adaptive IGA collocation achieves the best possible rates of convergence in higher

dimensions, works well for rough solutions, and considerably reduces the computational

cost in terms of point evaluations in comparison to full Gauss quadrature of corresponding

Galerkin discretizations.

7.1. Annular ring with a smooth solution

With the first numerical example, we demonstrate that adaptive isogeometric collocation

achieves the best possible rates of convergence in higher dimensions. To this end, we consider

the elliptic PDE

−∆ u+ u = f in Ω (50a)

u = 0 on ∂Ω (50b)

72

(a) Initial three-level
mesh.

(b) 1st refinement step. (c) 2nd refinement step.

Figure 53: Uniform refinement of a three-level hierarchical NURBS mesh for a quarter annulus.
The contours show the approximation of the solution field for quadratic NURBS.

The problem is defined over a quarter of an annular ring with inner radius Rin=1.0 and

outer radius Rout=4.0. The quarter annulus is located within the positive quadrant of the

Cartesian coordinate system x, y. The source term f is manufactured in such a way that

the exact solution to the PDE over the quarter annulus reads

u = φ2(r2 − 1)(r2 − 16) sin(x) (51)

with polar coordinates r =
√

x2 + y2 and φ = arccos(x/r). The solution is illustrated by its

numerical approximations plotted on the corresponding meshes in Fig. 53.

We start from a 6×9 single-level NURBS mesh, which represents the geometry of the

quarter annular ring exactly. Note that throughout the hierarchical refinement, the geometry

is represented by the initial mesh in the sense of Eq. (42). This initial mesh is then graded

towards the expected location of the highest gradients at the left hand boundary by two

levels of hierarchically refined NURBS (see Fig. 53a). The three-level mesh of Fig. 53a is

then refined uniformly, where in each refinement step all elements over the complete domain

are quadrisected. The meshes after the first and the second refinement step are shown in

Figs. 53b and 53c, respectively. The corresponding convergence of the relative error in the L2

norm and H1 semi-norm are plotted in Figs. 54a and 54b, respectively, for quadratic, cubic,

quartic and quintic NURBS. The plots clearly show that adaptive isogeometric collocation

based on hierarchical refinement and weighted collocation leads to the best possible rates of

convergence of O(p) for even and of O(p− 1) for odd polynomial degrees p.

73

16 32 64 128 256
10

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

sqrt (# degrees of freedom)

R
el

at
iv

e
er

ro
r

in
 L

 n

o
rm

-9

2

1

4

1
2

Quadratics p=2
Cubics p=3
Quartics p=4
Quintics p=5

(a) Error in L2.

16 32 64 128 256
10

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

sqrt (# degrees of freedom)

R
el

at
iv

e
er

ro
r

in
 H

se

m
in

o
rm

-8

1

1

4

1
2

Quadratics p=2
Cubics p=3
Quartics p=4
Quintics p=5

(b) Error in H1.

Figure 54: Adaptive isogeometric collocation: Best possible rates of convergence for the 2D quarter
annulus.

(a) Smooth solution T Eq. (53). (b) Singularity in the derivative ∂T/∂r.

Figure 55: Heat conduction over the L-shaped domain with reentrant corner.

7.2. L-shaped domain with a “rough” solution

The second numerical example consists of a stationary heat conduction problem defined

over an L-shaped domain Ω = [−1, 1]2\([0, 1] × [−1, 0]). It is governed by the Laplace

equation

∆T = 0 in Ω (52)

with homogeneous Dirichlet boundary conditions on the reentrant edges ΓD,1 = [0 ≤ x ≤ 1]

and ΓD,2 = [−1 ≤ y ≤ 0]. On the rest of the boundaries, Neumann boundary conditions are

74

(a) Four-level hierarchical mesh re-
fined towards the reentrant corner.

Weighted collocation point

1st hierarchical level:

Single collocation point
Coarse-scale:

Single collocation point

Weighted collocation point

2nd hierarchical level:

Single collocation point

(b) Collocation points corresponding to
the three-level quadratic basis.

Figure 56: Adaptive isogeometric collocation: Discretization and collocation points for the L-shaped
domain.

8 32 64 128 256
10

10
-2

10
-1

sqrt (# degrees of freedom)

R
el

at
iv

e
er

ro
r

in
 H

 s

em
i-

n
o

rm

-3

1

1

2

1
0.3

Uniform
Adaptive

Uniform
Adaptive

16

Quadratics p=2

Cubics p=3

(a) Error in H1 for p=2,3.

8 32 64 128 256
10

10
-2

10
-1

sqrt (# degrees of freedom)

R
el

at
iv

e
er

ro
r

in
 H

 s

em
i-

n
o

rm

-4

1

1

3

1
0.3

Uniform
Adaptive

Uniform
Adaptive

16

Quartics p=4

Quintics p=5

10
-3

(b) Error in H1 for p=4,5.

Figure 57: Adaptive isogeometric collocation: Convergence in the presence of a corner singularity.

imposed that satisfy the exact solution

T = r
2

3 sin

(

2φ

3

)

(53)

with polar coordinates r =
√

x2 + y2 and φ = arccos(x/r). The solution Eq. (53) can be

characterized as “rough”, since its gradient exhibits a singularity at the reentrant corner.

75

The exact solution and its first derivative with respect to r are plotted in Figs. 55a and 55b.

We discretize the L-shaped domain by two patches of 10×10 NURBS elements. We

subsequently add an increasing number of hierarchical levels around the reentrant corner

by splitting half of the NURBS elements on the currently finest hierarchical level in each

parametric direction of both patches. Figure 56a shows the adaptive NURBS mesh for

the four-level case. Figure 56b plots the corresponding set of collocation points for the

case of three-level quadratic NURBS. Its coloring refers to single collocation points of the

standard collocation scheme, each of which can be attributed to one basis function, and to

weighted collocation points in the transition regions of neighboring hierarchical levels. It

can be clearly observed that the majority of points are standard collocation points for basis

functions away from the transition regions that contribute towards an optimum ratio of one

point evaluation per degree of freedom.

For convenience, we carry out the analysis on one of the patches, using symmetry bound-

ary conditions along the patch interface. The convergence of the relative error in the H1

semi-norm is plotted in Figs. 57a and 57b for quadratic, cubic, quartic and quintic NURBS

basis functions, respectively. It can be observed that adaptive isogeometric collocation us-

ing an increasing number of hierarchical levels improves the convergence rates by around

one order of magnitude with respect to uniform refinement of the complete domain. The

present numerical example thus confirms that adaptive IGA collocation works well for rough

problems.

7.3. Advection skew to the mesh

For the remaining numerical examples, we return to the advection-diffusion PDE Eq. (10).

A typical benchmark test [130, 131] for adaptive refinement is sketched in Fig. 58, which

was examined in a Galerkin context for uniform k-refinement [2], local T-spline refinement

[132, 133] and local hierarchical refinement of NURBS [70]. The velocity a is inclined to the

mesh at 45◦ and the diffusivity D is chosen extremely small, so that the problem is domi-

nated by advection, resulting in a very high global Péclet number of 104. Thus, we expect

sharp interior and boundary layers, which require stable numerical techniques in addition to

increased resolution to be accurately captured. A corresponding Galerkin overkill solution

computed on a uniform mesh of 480×480 quadratic B-spline elements is shown in Fig. 59.

We investigate the adaptive resolution of the internal and boundary layers with the

present hierarchical refinement approach, starting from a 15×15 grid of quadratic B-splines.

We satisfy boundary conditions strongly at the inflow and outflow boundaries. To this end,

we keep track of the scaling factors si of Eq. (38) in the subdivision split of boundary func-

76

l=
0.2

L
=
1.0

u
=
0

u
=
0

u=0

u=1

Boundary layer

In
te
rn
al
la
ye
r

θ = 45◦

a=(cos θ, sin θ)

D=10−4

Figure 58: Advection skew to the mesh in 2D:
Problem definition.

Figure 59: Overkill solution computed on a
mesh of 480×480 quadratic B-spline elements.

tions in order to satisfy partition of unity at the non-zero inflow boundary. Furthermore, we

use upwinding of the collocation points to prevent unphysical oscillations (see Appendix B).

Employing an automatic refinement scheme based on a gradient based error indicator [70],

we obtain a sequence of hierarchical meshes with corresponding solution fields shown in

Figs. 60a through 60f.

It can be observed that the refinement captures the location of the internal and the

boundary layers very well. Despite the high Péclet number and the high degree of local

refinement with a larger number of hierarchical levels, no stability or robustness issues in the

adaptive isogeometric collocation scheme were encountered. We can observe some over- and

undershooting of the adaptive solution along the internal layer as also reported for T-spline

[132, 133] and hierarchical B-spline refinement [70] with the Galerkin method. We observe

that five hierarchical refinement steps are required to get control over the undershooting

close to the jump at the inflow boundary. While providing the same fine-scale element size

around the internal and boundary layers, the finest adaptive mesh of Fig. 60f with 8,187

degrees of freedom requires, at a comparable level of accuracy, only about 3.5% of the degrees

of freedom of the uniform overkill mesh of Fig. 59 with 230,400 degrees of freedom. Finally,

we would like to point out the high quality of the refinement in terms of locality, as the

hierarchical elements of the finest level show no propagation through the mesh.

77

(a) Initial - 225 dofs. (b) 1st step - 507 dofs. (c) 2nd step - 1,180 dofs.

(d) 3rd step - 2,649 dofs. (e) 4th step - 4,984 dofs. (f) 5th step - 8,187 dofs.

Figure 60: Sequence of hierarchical meshes and corresponding solution fields for the 2D benchmark
problem dominated by advection skew to the mesh.

78

aθ = ωr

θ R = 1.0

u = 0

u = 1

0.1

D = 0.05
ω = 2.0

az = 2.0

L
=
6.
0

ϕ=10◦

∂

∂n
u = 0

Figure 61: Advection-diffusion in a rotating cylinder: System sketch.

7.4. Advection-diffusion in a rotating cylinder

With the next numerical example, we show that adaptive isogeometric collocation can

be extended to 3D solid elements in a straightforward manner. We consider the advection-

diffusion benchmark introduced in [70], which consists of a three-dimensional cylinder that

rotates around its axis with tangential velocity aθ = ωr and radial velocity ar = 0. At the

same time, a flow of constant axial velocity az is assumed, which results in a helical plume

of the concentration that emerges from the fixed local inflow boundary condition u = 1. A

sketch of the problem is given in Fig. 61. The geometry of the cylinder is described exactly

by four equal NURBS patches, each of which covers one quarter of the cylinder and consists

of 9×9×50 quadratic NURBS elements in (r, θ, z)-directions, respectively. The geometry is

represented throughout the refinement process by the initial mesh in the sense of Eq. (42).

Dirichlet boundary conditions are prescribed strongly at the inflow and outflow boundaries

at both ends, where at the non-zero inflow, we satisfy partition of unity of the boundary basis

functions by taking into account the scaling factors si of Eq. (38) throughout the refinement

process. At the radial boundary of the cylinder, we impose no-flux Neumann conditions.

To accurately resolve the boundary and internal layers along the plume, we apply an

automatic adaptive refinement procedure based on a gradient-based error indicator [70].

Figures 62 and 64 show the resulting complete adaptive mesh with two levels of hierarchical

NURBS as well as the initial mesh and the sets of finest elements after each refinement step.

The corresponding solution obtained with the adaptive mesh of Fig. 62 is plotted in Fig. 63.

We observe that the refinement accurately traces the steepest gradients of the concentration

u. A uniform discretization that yields a plume resolution with the same small element size

79

Figure 62: Adaptive mesh with two levels of hi-
erarchical quadratic NURBS.

Figure 63: Solution field obtained with the adap-
tive mesh of Fig. 62.

(a) Initial.

(b) After 1st step.

(c) After 2nd step.

Figure 64: Finest ele-
ments at different steps of
the adaptive procedure.

as in the adaptive mesh requires a globally refined mesh of 36×144×200 quadratic NURBS

elements with 1,095,200 degrees of freedom, whereas the present adaptive mesh requires only

104,017 degrees of freedom.

7.5. Computational efficiency in higher dimensions

We emphasize again the key motivation for the use of isogeometric collocation, i.e. its

interpretation as a stable higher-order one-point quadrature scheme with only one point

evaluation per control point (i.e. node) [51, 52]. Measuring the computational efficiency

80

0 1 2 3
1.00

1.05

1.10

1.15

1.20

1.25

1.30

refinement steps

#
 c

o
ll

o
ca

ti
o

n
 p

o
in

ts
 /

 #
 c

o
n

tr
o

l
p

o
in

ts

Quadratics p=2
Cubics p=3
Quartics p=4
Quintics p=5

(a) Quarter annulus of Fig. 53 (h-refinement
of a hierarchically graded mesh): Each hier-
archical level is uniformly refined, while the
number of hierarchical levels is kept the same
in each step.

0 5 10 15 20 25 30
1.0

1.2

1.4

1.6

1.8

2.0

hierarchical levels

#
 c

o
ll

o
ca

ti
o

n
 p

o
in

ts
 /

 #
 c

o
n

tr
o

l
p

o
in

ts

Quadratics p=2

Cubics p=3

Quartics p=4

Quintics p=5

(b) L-shaped domain of Fig. 56 (increase of
local mesh grading): In each refinement step,
an additional hierarchical level is added that
increases the mesh density locally.

Figure 65: Computational efficiency reff of adaptive IGA collocation in terms of number of point
evaluations per control point for two different refinement strategies.

by the ratio of the number of evaluations at collocation points over the number of control

points in the system (see Eq. (49) in Section 6.4), we have an optimum of reff=1.0 for

IGA collocation of a single-level NURBS basis. For adaptive IGA collocation, this ratio is

increased due to weighted collocation, which takes into account more than one collocation

point for some of the basis functions. However, due to its locally restricted application

in transition regions between hierarchical levels, we demonstrated in Section 6.4 that for

the one-dimensional case the ratio reff always remains close to the optimum of one. In the

following, we show that this argument equally holds for higher dimensions.

First, we compare the two different refinement strategies that we applied in Section 7.1

for the quarter annulus and in Section 7.2 for the L-shaped domain, respectively. The

former starts with a fixed number of hierarchical levels in the initial mesh and applies

uniform mesh refinement to the initial hierarchically graded mesh. The latter starts with an

unrefined uniform mesh and locally increases the number of hierarchical levels, leading to a

strong grading of elements from coarsest to finest scale. Figures 65a and 65b show that for

the quarter annulus, the ratio reff between point evaluations and control points converges

quickly to the optimum reff=1.0, while for the L-shaped domain, the ratio reff converges

towards values below 2.0 for all polynomial degrees p considered. We conclude that if a

81

2

10

20

0 1 2 3 4 5
1

hierarchical levels

#
 p

o
in

t
ev

al
s

/
#

 c
o

n
tr

o
l

p
o

in
ts

 (
lo

g
 s

ca
le

)

p=2

p=3

Adaptive collocation:

Gauss quadrature (Galerkin):

p=3

p=2

(a) 2D case (Section 7.3).

0 1 2
1

10

100

hierarchical levels

#
 p

o
in

t
ev

al
s

/
#

 c
o

n
tr

o
l

p
o

in
ts

 (
lo

g
 s

ca
le

)

p=2

p=3

Adaptive collocation:

Gauss quadrature (Galerkin):

p=3

p=2

(b) 3D case (Section 7.4).

Figure 66: Computational efficiency in terms of reff of adaptive collocation and of full Gauss quadra-
ture required in the Galerkin method.

(a) Collocation points on the surface. (b) Cloud of all collocation points.

Figure 67: 3D cylinder: Single collocation points uniquely assigned to one basis function and weighted
collocation points for basis functions along the transition regions between hierarchical levels.

hierarchically graded mesh is uniformly refined, the ratio of point evaluations per degree of

freedom recovers in the limit the optimal computational efficiency of standard single-level

IGA collocation. If the grading of a mesh is increased by the addition of hierarchical levels,

the ratio saturates to an asymptotic value acceptably “close” to its optimum reff=1.0.

Second, we focus on the 2D advection benchmark discussed in Section 7.3. Considering

the topology of the area to be refined in each step, we can easily identify this as a sort

of worst-case example. Due to the boundary and internal layers, refinement is required

82

0 1 2 3 4 5 6 7 8
10

0

10
1

10
2

10
3

10
4

Quadratics p=2
Cubics p=3
Quartics p=4
Quintics p=5

refinement steps

#
 e

v
al

s
u

n
if

o
rm

 c
o

ll
.
/

#
 e

v
al

s
ad

ap
t.

 c
o

ll
.

(a) L-shaped domain (Section 7.2).

0 1 2 3 4 5
10

0

10
1

10
2

10
3

2D advection dominated
problem (Fig. 57), p=2

refinement steps

#
 e

v
al

s
u

n
if

o
rm

 c
o

ll
.
/

#
 e

v
al

s
ad

ap
t.

 c
o

ll
.

Extrapolation

3D advection diffusion
problem (Fig. 60), p=2

(b) 2D and 3D advection diffusion problems.

Figure 68: Comparison of uniform and adaptive collocation by the ratio of their point evaluations.

along lines rather than over an area, which is illustrated by the sequence of refined meshes

in Figs. 60a through 60f. As a consequence, the hierarchical levels in each refinement step

involve a large number of weighted collocation points due to the stretched transition regions,

while the number of single-level collocation points emanating from the areas enclosed is

comparatively small. Considering the refined meshes of Fig. 60, we construct corresponding

quadratic and cubic basis functions and collocation points as well as full Gauss quadrature

points required for Galerkin based IGA. Due to the unfavorable topology of refinement areas,

the ratios reff plotted in Fig. 66a are higher than for the L-shaped domain, but still stay

well below a value 2.0 for both p=2 and p=3. A comparison of the ratios reff obtained from

collocation and full Gauss quadrature reveals that for the same adaptive NURBS basis in 2D,

collocation cuts down the number of point evaluations per control point by about one order of

magnitude. For the 3D case discussed in Section 7.4, the behavior is equivalent. Considering

the refined meshes of Figs. 62 and 64, we again construct quadratic and cubic basis functions

and compute corresponding collocation and Gauss quadrature points. Figure 66b illustrates

the resulting computational efficiency in terms of the ratio reff, which is acceptably close to

the optimum reff = 1.0 and one to two orders of magnitude smaller than that of full Gauss

quadrature required by Galerkin based IGA. Figure 67 plots the collocation points for the

adaptive mesh of Fig. 62. Comparing the size of the different sets of points, we see that

the number of single collocation points by far outweighs the number of weighted collocation

points, which explains its ratios reff being close to 1.0.

Finally, we briefly illustrate again the imperative requirement for local adaptivity in

83

isogeometric collocation. To this end, we compute the relation of collocation points for a

uniformly refined NURBS basis of the same fine-scale resolution with respect to collocation

points for a hierarchically refined NURBS basis. The resulting number is a normalization

with respect to adaptive collocation and thus tells us how many times more point evaluations

are required by standard uniform collocation. Figure 68a shows the evolution of this number

during the refinement of the L-shaped domain problem discussed in Section 7.2. For the

finest resolution of the reentrant corner shown in Fig. 55, standard IGA collocation with

a uniform NURBS basis requires 10,000 times as many point evaluations as adaptive IGA

collocation applied in the sense of Fig. 56. Figure 68b shows similar ratios for the advection

diffusion examples discussed in Sections 7.3 and 7.4. In particular, we observe that the

difference in point evaluations between uniform and adaptive hierarchical refinement further

increases when we go from 2D to 3D problems.

8. Summary and conclusions

In this paper, we compared isogeometric collocation (IGA-C) with isogeometric Galerkin

(IGA-G) and standard C0 finite element methods (FEA-G) in terms of their computational

efficiency. We first assessed the computational cost in floating point operations for the

formation and assembly of stiffness matrices and residual vectors. The operation counts

demonstrate that compared to IGA-G and FEA-G, IGA-C significantly reduces the compu-

tational cost. Second, we showed that in IGA-C, the bandwidth of the stiffness matrix and

the cost of matrix-vector products are smaller than in IGA-G and FEA-G. These properties

are important indicators for the performance of direct and iterative solvers, respectively.

Third, we used a series of representative smooth and rough problems in 3D to numerically

compare the different methods with respect to accuracy vs. the number of degrees of freedom

as well as accuracy vs. the serial computing time on a single thread. We showed that IGA-C

can be orders of magnitude faster than IGA-G and FEA-G to achieve a specified level of ac-

curacy. We illustrated that IGA-C approximations using basis functions of even polynomial

degree can be considered the sweet spot of collocation, since they offer the same convergence

rate in H1 with respect to the optimal rates of the Galerkin methods at a computational cost

that is orders of magnitude smaller. We also observed that IGA-C approximations using

basis functions of odd polynomial degree (in particular cubics) are not as efficient as those

using basis functions of even degree, since they exhibit a less favorable ratio between best

possible rates of convergence and computational cost. As a final thought, we discussed the

significant potential of IGA-C in terms of efficient memory usage and parallelization that

84

will put IGA-C even further ahead of Galerkin methods when computing time in parallel

applications on modern multi-core machines is considered.

We then showed that local adaptivity in isogeometric collocation can be based on local

hierarchical refinement of NURBS. In recent contributions on isogeometric collocation, the

Greville abscissae derived from the knot vector of the NURBS basis have been shown to

provide a suitable set of collocation points with favorable numerical properties. However, in

the context of a hierarchical basis, the Greville abscissae of different hierarchical levels may

generate coincident collocation points, which leads to the linear dependence of the equation

system. To bypass this problem, we introduced the concept of weighted isogeometric collo-

cation that derives each collocation equation from a group of collocation points, generated

from the fine-scale Greville abscissae of the next hierarchical level. We showed that weighted

IGA collocation leads to the best possible rates of convergence, however, at a higher com-

putational cost than standard IGA collocation. We therefore applied weighted collocation

only in regions, where hierarchical levels overlap and coincident points are possible, and

continued to collocate at single points in the rest of the domain. The resulting adaptive

isogeometric collocation scheme combines several advantages. It reconciles collocation at

the Greville abscissae with hierarchically refined NURBS basis functions, fully inheriting

the favorable properties of both technologies. The key idea of local weighted collocation

is acceptably simple and permits a straightforward implementation, in particular if hierar-

chical refinement routines already exist. Several numerical examples in one, two and three

dimensions demonstrated that adaptive isogeometric collocation in this form converges with

the best possible rates, while it preserves the key advantage in terms of a small number

of point evaluations. In particular, we showed that the ratio between the number of point

evaluations and the number of control points (i.e. nodes) in the system remains always close

to the optimum of one and considerably below what is required in a corresponding Galerkin

method. Moreover, adaptive IGA collocation demonstrated its robustness for “rough” and

advection dominated problems, and no stability issues were encountered in the presence of

a large number of hierarchical levels.

We believe that isogeometric collocation has the potential to offer a more efficient alter-

native to existing finite element technology. Some particularly promising research topics that

need to be investigated are the appropriate treatment of boundary and patch interface condi-

tions, fully nonlinear problems, locking free plate and shell formulations, three-dimensional

solids and fluids, efficient parallel implementations, and large-scale industrial applications.

There are many challenges and hurdles to be overcome, but the opportunity seems very

85

significant. At the same time, we are convinced that more efficient quadrature schemes for

isogeometric Galerkin methods are possible, and their investigation constitutes an important

objective of future research in IGA.

Acknowledgments. D. Schillinger was supported by the German National Science Foun-

dation (Deutsche Forschungsgemeinschaft DFG) under grants SCHI 1249/1-1 and SCHI

1249/1-2. J.A. Evans, M.A. Scott, and T.J.R. Hughes were supported by grants from the

Office of Naval Research (N00014-08-1-0992), the National Science Foundation (CMMI-

01101007), and SINTEF (UTA10-000374), with the University of Texas at Austin. A. Reali

was supported by the European Research Council through the FP7 Ideas Starting Grant n.

259229 ISOBIO, and by the Italian MIUR through the FIRB “Futuro in Ricerca” Grant n.

RBFR08CZ0S.

86

Appendix A. Derivation of operation counts at a quadrature/collocation point

In the following, we provide details on the operation counts regarding the cost in floating

point operations (flops) at each quadrature/collocation point for the formation and assembly

of (a) the local stiffness matrix of a scalar problem (Laplace), (b) the local stiffness matrix

of a vector problem (elasticity) and (c) the residual vector in an elastodynamics problem

without damping. Operations required for the formation and assembly of local matrix and

vector entities are separately listed in Appendices A.2, A.3, and A.4 for cases (a), (b) and (c),

respectively. We note that in this paper each multiplication and each addition are considered

as a single flop. We refer to isogeometric collocation, Galerkin based isogeometric analysis

and C0 finite element methods with abbreviations IGA-C, IGA-G and FEA-G, respectively.

We neglect the cost of all control structures and do not use the symmetry of the Galerkin

stiffness matrices, since this does not hold for non-symmetric problems such as advection-

diffusion. We assume that IGA-C and IGA-G use NURBS to represent the geometry exactly

and FEA-G uses the finite element mesh for the approximation of the geometry. For FEA-G,

our counts are based on Bernstein polynomials which do not involve a rational mapping and

whose cost is therefore comparable to standard C0 basis functions. For IGA-C, we report

operation counts for an interior collocation point that sees (p+ 1) basis functions.

For the solution of the small systems of linear equations that occur during the compu-

tation of first and second derivatives in global coordinates, we assumed standard Gaussian

elimination. Typically we need to solve many systems with the same coefficient matrix, but

k different right hand sides. This requires only one forward elimination of the coefficient

matrix and k forward eliminations and back substitutions of the right hand sides. The cor-

responding cost in flops can be computed with 2/3n3 + 3/2kn2 − (3k + 4)/6n, where n is

the number of equations in the system.

The computation of univariate basis functions in local coordinates depends largely on

function type and specific implementation. Therefore we neglect its cost, assuming it is

small and comparable between methods. Alternatively, we could assume that univariate

basis functions in local coordinates are precomputed for a typical element (IGA-G/FEA-G)

or the required types and locations of collocation points, which actually many codes do (as for

instance the code that we used for all computations shown in this paper). Operations related

to the computation of multivariate basis functions and its derivatives in global coordinates

are the same for the stiffness forms of case (a) and (b), and therefore reported only once in

Appendix A.1.

For the residual forms in the elastodynamics case (c), we can optimize the evaluation

87

Data: Local coordinates {xi, eta} of the current quadrature/collocation point;

Arrays of control point values cpts(:, 1), cpts(:, 2) and weights w(:, 1) defining the geometry;

Functions Bspline(∗, i), dBspline(∗, i) and ddBspline(∗, i) providing the function values of the
ith univariate B-splines and its first/second derivatives in local coordinates;

Result: NURBS basis functions and its first/second derivatives in global coordinates ;

% 1. Form tensor products

for j=1:(p+1) do
for i=1:(p+1) do

B ((j-1)*(p+1)+i) = BSpline(xi,i) * BSpline(eta,j);
dBxi ((j-1)*(p+1)+i) = dBSpline(xi,i) * BSpline(eta,j);
dBeta ((j-1)*(p+1)+i) = BSpline(xi,i) * dBSpline(eta,j);
ddBxi ((j-1)*(p+1)+i) = ddBSpline(xi,i) * BSpline(eta,j);
ddBeta ((j-1)*(p+1)+i) = BSpline(xi,i) * ddBSpline(eta,j);
dBxieta ((j-1)*(p+1)+i) = dBSpline(xi,i) * dBSpline(eta,j);

end

end

% 2. Multiply each B-spline function with corresponding weight

N (1,:) = B .* w(:,1);
dN (1,:) = dBxi .* w(:,1);
dN (2,:) = dBeta .* w(:,1);
ddN (1,:) = ddBxi .* w(:,1);
ddN (2,:) = dBxieta .* w(:,1);
ddN (3,:) = ddBeta .* w(:,1);

% 3. Compute sums of B-spline functions

w sum = sum(N(1,:));
dw xi = sum(dN(1,:));
dw eta = sum(dN(2,:));
d2w xi = sum(ddN(1,:));
d2w xieta = sum(ddN(2,:));
d2w eta = sum(ddN(3,:));

% 4. Compute NURBS basis functions and its first and second derivatives in local coordinates

ddN(1,:) = ddN(1,:)/w sum - (2*dN(1,:)*dw xi + N*d2w xi)/w sum∧2 ...
+ 2*N*dw xi∧2/w sum∧3;

ddN(2,:) = ddN(2,:)/w sum - (dN(1,:)*dw eta + dN(2,:)*dw xi ...
+N*d2w xieta)/w sum∧2 + 2*N*dw xi*dw eta/w sum∧3;

ddN(3,:) = ddN(3,:)/w sum - (2*dN(2,:)*dw eta + N*d2w eta)/w sum∧2 ...
+2*N*dw eta∧2/w sum∧3;

dN(1,:) = dN(1,:)/w sum - N*dw xi/w sum∧2;
dN(2,:) = dN(2,:)/w sum - N*dw eta/w sum∧2;
N = N/w sum;

continued on next page

88

continued from previous page

% 5. Compute Jacobian matrix

dxdxi = [dN(1,:)*cpts(:,1) dN(2,:)*cpts(:,1);
dN(1,:)*cpts(:,2) dN(2,:)*cpts(:,2)];

% 6. Set up the Hessian and the matrix of squared first derivatives

d2xdxi2 = [ddN(1,:)*cpts(:,1) ddN(2,:)*cpts(:,1) ddN(3,:)*cpts(:,1);
ddN(1,:)*cpts(:,2) ddN(2,:)*cpts(:,2) ddN(3,:)*cpts(:,2)];

dxdxi2 = [dxdxi(1,1)∧2 dxdxi(1,1)*dxdxi(1,2) dxdxi(1,2)∧2;
2*dxdxi(1,1)*dxdxi(2,1) dxdxi(1,1)*dxdxi(2,2)+dxdxi(1,2)*dxdxi(2,1) 2*dxdxi(1,2)*dxdxi(2,2);

dxdxi(2,1)∧2 dxdxi(2,1)*dxdxi(2,2) dxdxi(2,2)∧2];

% 7. Solve for first derivatives in global coordinates (using MATLAB’s backslash operator)

dN = dxdxi’\dN;

% 8. Solve for second derivatives in global coordinates (using MATLAB’s backslash operator)

ddN = dxdxi2’\(ddN - d2xdxi2’*dN);

Algorithm 1:
MATLAB code snippet 1 - Compute NURBS basis functions and their first and second
derivatives in global coordinates. This routine is required for the formation of the
global rows of a stiffness matrix at each collocation point in IGA collocation.

of displacements and accelerations in IGA-C, so that the number of linear system solves

required for the computation of second order derivatives is considerably reduced. To help

interested readers to retrace our counts, we additionally provide corresponding MATLAB

routines. Algorithm 1 shows the computation of 2D NURBS basis functions and their first

and second derivatives for the computation of the stiffness forms. Algorithm 2 shows the

evaluation of displacements and accelerations in 2D NURBS based collocation.

For the elastodynamics case (c), we furthermore assume that the Jacobian matrix in

IGA-G/FEA-G and the Jacobian and Hessian matrices in IGA-C are precomputed at each

quadrature/collocation point. This requires the storage of a maximum of 27 doubles (for

the case of a collocation point in 3D), but significantly reduces the computational effort

for the formation of the residual vector. We also assume optimized linear algebra routines

that avoid operations on zero entries of local matrices in IGA-G and FEA-G. In the tables

of Appendix A, B denotes the strain-nodal displacement matrix and H is the matrix that

maps nodal degrees of freedom to values at a collocation/quadrature point. In 3D, they

89

Data: Local coordinates {xi, eta} of the current collocation point;

Arrays of coefficients coefs u(:,1), coefs u(:,2) and coefs a(:,1), coefs a(:,2) determining
the current displacements and accelerations, respectively;

Weights w(:, 1) depending on the NURBS geometry;

Functions Bspline(∗, i), dBspline(∗, i) and ddBspline(∗, i) providing the function values of the
ith univariate B-splines and its first/second derivatives in local coordinates;

Result: The first/second derivatives of displacements u in global coordinates and accelerations a,
computed with NURBS basis functions;

% 1. Form tensor products
for j=1:(p+1) do

for i=1:(p+1) do

B ((j-1)*(p+1)+i) = BSpline(xi,i) * BSpline(eta,j);
dBxi ((j-1)*(p+1)+i) = dBSpline(xi,i) * BSpline(eta,j);
dBeta ((j-1)*(p+1)+i) = BSpline(xi,i) * dBSpline(eta,j);
ddBxi ((j-1)*(p+1)+i) = ddBSpline(xi,i) * BSpline(eta,j);
ddBeta ((j-1)*(p+1)+i) = BSpline(xi,i) * ddBSpline(eta,j);
dBxieta ((j-1)*(p+1)+i) = dBSpline(xi,i) * dBSpline(eta,j);

end

end

% 2. Multiply each B-spline function with corresponding weight

N (1,:) = B .* w(:,1);
dN (1,:) = dBxi .* w(:,1);
dN (2,:) = dBeta .* w(:,1);
ddN (1,:) = ddBxi .* w(:,1);
ddN (2,:) = dBxieta .* w(:,1);
ddN (3,:) = ddBeta .* w(:,1);

% 3. Compute sums of weighted B-spline functions

w sum = sum(N(1,:));
dw xi = sum(dN(1,:));
dw eta = sum(dN(2,:));
d2w xi = sum(ddN(1,:));
d2w xieta = sum(ddN(2,:));
d2w eta = sum(ddN(3,:));

% 4. Derivatives of u in local coordinates multiplied with the sums of weights times basis functions

dwu xi = dN(1,:) * coefs u(:,1:2);
dwu eta = dN(2,:) * coefs u(:,1:2);
d2wu xi = ddN(1,:) * coefs u(:,1:2);
d2wu xieta = ddN(2,:) * coefs u(:,1:2);
d2wu eta = ddN(3,:) * coefs u(:,1:2);

continued on next page

90

continued from previous page

% 5. Divide to obtain derivatives of u in local coordinates
du(1,1:2) = dwu xi / dw xi;
du(2,1:2) = dwu eta / dw eta;
d2u(1,1:2) = d2wu xi / d2w xi;
d2u(2,1:2) = d2wu xieta / d2w xieta;
d2u(3,1:2) = d2wu eta / d2w eta;

% Note: The Jacobian and the Hessian depend only on the initial geometry. We assume that both
% matrices dxdxi and d2xdxi2 are precomputed (see Algorithm 1) and stored at each collocation
% point. This is possible, since the corresponding memory consumption per point is negligible
% (10 doubles in 2D, 27 doubles in 3D).

% 6. Set up the remaining system matrix to determine second order derivatives of u

dxdxi2 = [dxdxi(1,1)∧2 dxdxi(1,1)*dxdxi(1,2) dxdxi(1,2)∧2;
2*dxdxi(1,1)*dxdxi(2,1) dxdxi(1,1)*dxdxi(2,2)+dxdxi(1,2)*dxdxi(2,1) 2*dxdxi(1,2)*dxdxi(2,2);

dxdxi(2,1)∧2 dxdxi(2,1)*dxdxi(2,2) dxdxi(2,2)∧2];

% 7. Solve for first derivatives of u in global coordinates (using MATLAB’s backslash operator)

du = dxdxi’\du;

% 8. Solve for second derivatives of u in global coordinates (using MATLAB’s backslash operator)

d2u = dxdxi2’\(d2u - d2xdxi2’*du);

% 9. Compute accelerations

a(1,:) = N(1,:) * coefs a(:,1:2) / w sum ;

Algorithm 2:
MATLAB code snippet 2 - Compute displacements and accelerations with 2D NURBS
basis functions in the elastodynamics case. This routine is applied at each collocation
point and minimizes the cost for the evaluation of second order derivatives.

show the following well-known structure per node A [96]

BA =























NA,x 0 0

0 NA,y 0

0 0 NA,z

0 NA,z NA,y

NA,z 0 NA,x

NA,y NA,x 0























, HA =







NA 0 0

0 NA 0

0 0 NA






(A.1)

91

Appendix A.1. Flops to evaluate basis functions

d IGA-C IGA-G FEA-G

The computation of basis function values in parametric directions depends
largely on function type and specific implementation. Therefore we neglect

its cost, assuming it is small and comparable between methods.

1. Form tensor products:

1 - - -

2 6(p+ 1)2 3(p+ 1)2 3(p+ 1)2

3 20(p+ 1)3 8(p+ 1)3 8(p+ 1)3

2. Multiply each B-spline basis function with corresponding weight:

1 3(p+ 1) 2(p+ 1) -

2 6(p+ 1)2 3(p+ 1)2 -

3 10(p+ 1)3 4(p+ 1)3 -

3. Compute sums of B-spline basis functions:

1 3(p+ 1) 2(p+ 1) -

2 6(p+ 1)2 3(p+ 1)2 -

3 10(p+ 1)3 4(p+ 1)3 -

4. Compute NURBS basis functions and its derivatives with respect to local coordinates:

Function, first and

second derivatives

Function and first

derivatives

1 21(p+ 1) 6(p+ 1) -

2 57(p+ 1)2 11(p+ 1)2 -

3 109(p+ 1)3 16(p+ 1)3 -

5. Compute Jacobian matrix:

1 2(p+ 1) 2(p+ 1) 2(p+ 1)

2 8(p+ 1)2 8(p+ 1)2 8(p+ 1)2

3 18(p+ 1)3 18(p+ 1)3 18(p+ 1)3

6. Compute Hessian and the matrix of squared first derivatives required for

determining second order derivatives:

1 2(p+ 1) + 2 - -

2 12(p+ 1)2 + 13 - -

3 36(p+ 1)3 + 63 - -

continued on next page

92

continued from previous page

7. Solve for 1st derivatives:

1 (p+ 1) (p+ 1) (p+ 1)

2 5(p+ 1)2 + 4 5(p+ 1)2 + 4 5(p+ 1)2 + 4

3 12(p+ 1)3 + 20 12(p+ 1)3 + 20 12(p+ 1)3 + 20

8. Compute right hand side vectors and solve for 2nd derivatives:

1 3(p+ 1) - -

2 24(p+ 1)2 + 20 - -

3 87(p+ 1)3 + 140 - -

Total number of flops:

1 35(p+ 1) + 2 13(p+ 1) 3(p+ 1)

2 124(p+ 1)2 + 37 33(p+ 1)2 + 4 16(p+ 1)2 + 4

3 302(p+ 1)3 + 223 62(p+ 1)3 + 20 38(p+ 1)3 + 20

93

Appendix A.2. Flops to evaluate the local stiffness matrix in the Laplace problem

d IGA-C IGA-G FEA-G

1. Flops transferred from Appendix A.1:

1 35(p+ 1) + 2 13(p+ 1) 3(p+ 1)

2 124(p+ 1)2 + 37 33(p+ 1)2 + 4 16(p+ 1)2 + 4

3 302(p+ 1)3 + 223 62(p+ 1)3 + 20 38(p+ 1)3 + 20

2. Set up local stiffness matrix:

No local stiffness matrix

required.
Evaluate from right to left: BTB |J |ω

(|J | = Jacobian, ω = weight)

1 - (p+ 1)2 + (p+ 1) (p+ 1)2 + (p+ 1)

2 - 3(p+ 1)4 + 2(p+ 1)2 3(p+ 1)4 + 2(p+ 1)2

3 - 5(p+ 1)6 + 3(p+ 1)3 5(p+ 1)6 + 3(p+ 1)3

3. Evaluate Laplace

operator on global level:

3. Add to local element stiffness matrix:

(Final assembly to global matrix is neglected.)

1 - (p+ 1)2 (p+ 1)2

2 (p+ 1)2 (p+ 1)4 (p+ 1)4

3 2(p+ 1)3 (p+ 1)6 (p+ 1)6

Total operations:

1 35(p+ 1) + 2 2(p+ 1)2 + 14(p+ 1) 2(p+ 1)2 + 4(p+ 1)

2 125(p+ 1)2 + 37 4(p+ 1)4 + 35(p+ 1)2 + 4 4(p+ 1)4 + 18(p+ 1)2 + 4

3 304(p+ 1)3 + 223 6(p+1)6+65(p+1)3+20 6(p+1)6+41(p+1)3+20

94

Appendix A.3. Flops to evaluate the local stiffness matrix in elasticity

d IGA-C IGA-G FEA-G

1. Flops transferred from Appendix A.1:

1 35(p+ 1) + 2 13(p+ 1) 3(p+ 1)

2 124(p+ 1)2 + 37 33(p+ 1)2 + 4 16(p+ 1)2 + 4

3 302(p+ 1)3 + 223 62(p+ 1)3 + 20 38(p+ 1)3 + 20

2. Set up local stiffness matrix:

No local stiffness

matrix required.

Evaluate from right to left: BTD B |J |ω

(B = B-matrix, D = elasticity matrix, |J | = Jaco-

bian, ω = Gauss weight)

1 - 2(p+ 1)2 + (p+ 1) 2(p+ 1)2 + (p+ 1)

2 - 20(p+ 1)4 + 36(p+ 1)2 20(p+ 1)4 + 36(p+ 1)2

3 - 99(p+ 1)6 + 216(p+ 1)3 99(p+ 1)6 + 216(p+ 1)3

3. Evaluate Navier’s

eqs. on global level:

3. Add to local element stiffness matrix:

(Final assembly to global matrix is neglected.)

1 (p+ 1) (p+ 1)2 (p+ 1)2

2 12(p+ 1)2 4(p+ 1)4 4(p+ 1)4

3 21(p+ 1)3 9(p+ 1)6 9(p+ 1)6

Total operations:

1 36(p+ 1) + 2 3(p+ 1)2 + 14(p+ 1) 3(p+ 1)2 + 4(p+ 1)

2 136(p+ 1)2 + 37 24(p+ 1)4 + 69(p+ 1)2 + 4 24(p+ 1)4 + 52(p+ 1)2 + 4

3 323(p+ 1)3 + 223 108(p+1)6+278(p+1)3+20 108(p+1)6+254(p+1)3+20

95

Appendix A.4. Flops to evaluate the local residual vector in elastodynamics

d IGA-C IGA-G FEA-G

1a. Flops transferred from Appendix A.1:

Assume that the Jacobian and the Hessian in IGA-C and the Jacobian in

IGA-G/FEA-G are precomputed at each collocation/quadrature point.

Only steps 1. to 3. of

Appendix A.1
Only steps 1. to 4. and 7. of Appendix A.1

1 6(p+ 1) 11(p+ 1) (p+ 1)

2 18(p+ 1)2 25(p+ 1)2 + 4 8(p+ 1)2 + 4

3 40(p+ 1)3 44(p+ 1)3 + 20 20(p+ 1)3 + 20

1b. Compute first/second

derivatives of wu w.r.t.

local coordinates:

1 4(p+ 1) - -

2 20(p+ 1)2 - -

3 54(p+ 1)3 - -

1c. Compute first/second

derivatives of u w.r.t.

local coordinates

and the matrix of squared

first derivatives:

1 2 + 1 = 3 - -

2 10 + 13 = 23 - -

3 27 + 63 = 90 - -

1d. Compute first/second

derivatives of u w.r.t.

global coordinates:

Solve systems of eqs. ac-

cording to steps 7. and 8.

of Appendix A.1.

1 1 + 3 = 4 - -

2 14 + 64 = 78 - -

3 52 + 401 = 453 - -

continued on next page

96

continued from previous page

2. Evaluate external force

and add to global

residual:

2. Evaluate external force, add to element residual:

From right to left: HT f |J |ω

(f = force vector, |J | = Jacobian, ω = Gauss weight)

1 1 2(p+ 1) + 2 2(p+ 1) + 2

2 2 4(p+ 1)2 + 3 4(p+ 1)2 + 3

3 3 6(p+ 1)3 + 4 6(p+ 1)3 + 4

3. Evaluate Navier’s eqs.

with second derivatives of

u and add to global

residual:

3. Evaluate internal force, add to element residual:

From right to left: BTD B c |J |ω

(D = elasticity matrix, c = local displ. vector)

1 2 5(p+ 1) + 2 5(p+ 1) + 2

2 12 18(p+ 1)2 + 8 18(p+ 1)2 + 8

3 21 39(p+ 1)3 + 19 39(p+ 1)3 + 19

4. Compute acceleration

a and add ρa to global

residual vector:

4. Evaluate inertial force, add to element residual:

From right to left: HTH k ρ|J |ω

(k = local acceleration vector, ρ = density)

1 2(p+ 1) + 2 5(p+ 1) + 2 5(p+ 1) + 2

2 4(p+ 1)2 + 4 10(p+ 1)2 + 2 10(p+ 1)2 + 2

3 6(p+ 1)3 + 6 15(p+ 1)3 + 2 15(p+ 1)3 + 2

No assembly required
Note: Cost of assembly of element residual to global

residual is neglected.

Total operations:

1 12(p+ 1) + 12 23(p+ 1) + 6 13(p+ 1) + 6

2 42(p+ 1)2 + 119 57(p+ 1)2 + 17 40(p+ 1)2 + 17

3 100(p+ 1)3 + 573 104(p+ 1)3 + 45 80(p+ 1)3 + 45

97

Appendix B. Point upwinding in isogeometric collocation

For advection dominated operators, central difference type equations as they typically

arise from Galerkin discretizations have long been known to lead to solutions that are cor-

rupted by spurious oscillations [128–130]. It is natural that this also holds for IGA col-

location, since the collocation points based on the Greville abscissae are located central

to the corresponding B-spline basis functions. A common way to deal with this problem

is the concept of upwinding [128–130]. In the context of IGA collocation, we can achieve

an upwinding effect by simply shifting the collocation points upstream in the direction of

the velocity. From a variational point of view, this corresponds to Dirac δ functions in

the weighted residual form (see Section 2.2) that are shifted upstream. Since the modified

Dirac δ functions are applied to all terms in the PDE, this formulation can be considered a

consistent Petrov-Galerkin weighted residual method. In principle, this simple procedure is

equivalent to shifting quadrature points upstream in a Galerkin context [134, 135] and has

been successfully adapted to other collocation schemes based on different sets of collocation

points (see for example [136–138]).

The validity and efficiency of point upwinding for IGA collocation is briefly illustrated

by some results for the 2D advection dominated benchmark of Fig. 58, discretized with a

10×10 mesh of quadratic B-splines. Figure A.69a shows the unstable oscillatory solution

resulting from collocation at the standard Greville abscissae. Figures A.69b and A.69c

show the improvement of the solution for moderate and strong shifting of collocation points

upstream. Although the general solution behavior is considerably improved by upwinding, it

also entails spurious oscillations that can be observed at the lower-right part of the domain.

Whereas the solution is completely free of oscillations and almost hitting the exact value of

zero everywhere for moderate upwinding (see Fig. A.69b), a checker-board pattern appears

for strong upwinding of collocation points (see Fig. A.69c). Note that the oscillations and

moderate accuracy for values close to u = 0 in the plots of Figs. 59 and 60 are due to this

phenomenon. For more complex problems with varying Péclet numbers, it would be useful

to determine an explicit relation depending on the local Péclet number that provides the

optimal distance a point needs to be shifted as a compromise between the beneficial effect

of upwinding and the oscillatory side-effects of Fig. A.69c. Beyond the idea of collocation-

point upwinding, we believe that it would be beneficial to investigate the development of a

consistent stabilized IGA collocation technology that achieves analogous advantages as the

SUPG method [130] for Galerkin based discretization methods.

98

(a) No upwinding: Col-
location points are lo-
cated central to basis
functions.

(b) Moderate upwind-
ing: Shifted upstream
by 1/4 of the knot span
diagonal.

(c) Strong upwinding:
Shifted upstream by al-
most 1/2 of the diago-
nal.

Figure B.69: 2D benchmark of Fig. 58: The effect of point upwinding in single-level standard IGA
collocation using quadratic B-splines.

References

[1] T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS,

exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering,

194:4135–4195, 2005.

[2] J.A. Cottrell, T.J.R. Hughes, and Y. Bazilevs. Isogeometric analysis: Towards Integration of CAD

and FEA. John Wiley & Sons, 2009.

[3] P. Kagan and A. Fischer. Integrated mechanically based CAE system using B-spline finite elements.

Computer Aided Design, 32(8-9):539–552, 2000.

[4] R. Schmidt, J. Kiendl, K.U. Bletzinger, and R. Wüchner. Realization of an integrated structural design

process: analysis-suitable geometric modelling and isogeometric analysis. Computing and Visualization

in Science, 13(7):315–330, 2009.

[5] E. Cohen, T. Martin, R.M. Kirby, T. Lyche, and R.F. Riesenfeld. Analysis-aware modeling: Under-

standing quality considerations in modeling for isogeometric analysis. Computer Methods in Applied

Mechanics and Engineering, 199:334–356, 2010.

[6] J.A. Evans, Y. Bazilevs, I. Babuška, and T.J.R. Hughes. n-widths, sup-infs, and optimality ratios for

the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and

99

Engineering, 198(21–26):1726–1741, 2009.

[7] D. Großmann, B. Jüttler, H. Schlusnus, J. Barner, and A.H. Vuong. Isogeometric simulation of turbine

blades for aircraft engines. Computer Aided Geometric Design, 29(7):519–531, 2012.

[8] J.A. Cottrell, A. Reali, Y. Bazilevs, and T.J.R. Hughes. Isogeometric analysis of structural vibrations.

Computer Methods in Applied Mechanics and Engineering, 195:5257–5296, 2006.

[9] T. J. R. Hughes, A. Reali, and G. Sangalli. Duality and unified analysis of discrete approximations in

structural dynamics and wave propagation: Comparison of p-method finite elements with k-method

NURBS. Computer Methods in Applied Mechanics and Engineering, 197:4104–4124, 2008.

[10] T. Elguedj, Y. Bazilevs, V.M. Calo, and T.J.R. Hughes. B̄ and F̄ projection methods for nearly

incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements.

Computer Methods in Applied Mechanics and Engineering, 197:2732–2762, 2008.

[11] R.L. Taylor. Isogeometric analysis of nearly incompressible solids. International Journal for Numerical

Methods in Engineering, 87(1-5):273–288, 2011.

[12] R. Echter and M. Bischoff. Numerical efficiency, locking and unlocking of NURBS finite elements.

Computer Methods in Applied Mechanics and Engineering, 199:374–382, 2010.

[13] D.J. Benson, Y. Bazilevs, M.C. Hsu, and Hughes T.J.R. Isogeometric shell analysis: The Reissner-

Mindlin shell. Computer Methods in Applied Mechanics and Engineering, 199:276–289, 2010.

[14] D.J. Benson, S. Hartmann, Y. Bazilevs, M.C. Hsu, and T.J.R. Hughes. Blended Isogeometric Shells.

Computer Methods in Applied Mechanics and Engineering, 255:133–146, 2013.

[15] R. Echter, B. Oesterle, and M. Bischoff. A hierarchic family of isogeometric shell finite elements.

Computer Methods in Applied Mechanics and Engineering, 254:170–180, 2013.

[16] Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang. Isogeometric fluid-structure interaction: The-

ory, algorithms and computations. Computational Mechanics, 43:3–37, 2008.

[17] Y. Bazilevs, M.C. Hsu, J. Kiendl, R. Wüchner, and K.U. Bletzinger. 3D simulation of wind turbine

rotors at full scale. Part II: Fluid-structure interaction. International Journal of Numerical Methods

in Fluids, 65:236–253, 2011.

[18] Y. Bazilevs, M.C. Hsu, and M.A. Scott. Isogeometric fluid-structure interaction analysis with emphasis

on non-matching discretizations, and with application to wind turbines. Computer Methods in Applied

Mechanics and Engineering, 249–252:28–41, 2012.

[19] Y. Bazilevs, V.M. Calo, J. A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi. Variational multi-

scale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer

Methods in Applied Mechanics and Engineering, 197:173–201, 2007.

[20] I. Akkerman, Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and S. Hulshoff. The role of continuity in

residual-based variational multiscale modeling of turbulence. Computational Mechanics, 41:371–378,

2008.

[21] H. Gomez, V.M. Calo, Y. Bazilevs, and T.J.R. Hughes. Isogeometric analysis of the Cahn-Hilliard

phase-field model. Computer Methods in Applied Mechanics and Engineering, 197:4333–4352, 2008.

[22] M.J. Borden, C.V. Verhoosel, M.A. Scott, Hughes T.J.R., and C.M. Landis. A phase-field description

of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 217–220:77–95,

2012.

[23] L. Dede’, M.J. Borden, and T.J.R. Hughes. Isogeometric analysis for topology optimization with a

100

phase field model. Archives of Computational Methods in Engineering, 19:427–465, 2012.

[24] J. Liu, L. Dede’, J.A. Evans, M.J. Borden, and T.J.R. Hughes. Isogeometric analysis of the advective

Cahn-Hilliard equation: Spinodal decomposition under shear flow. Computational Physics, 242:321–

350, 2013.

[25] I. Temizer, P. Wriggers, and T.J.R. Hughes. Contact treatment in isogeometric analysis with NURBS.

Computer Methods in Applied Mechanics and Engineering, 200:1100–1112, 2011.

[26] I. Temizer, P. Wriggers, and T.J.R. Hughes. Three-dimensional mortar-based frictional contact treat-

ment in isogeometric analysis with NURBS. Computer Methods in Applied Mechanics and Engineering,

209–212:115–128, 2012.

[27] L. De Lorenzis, P. Wriggers, and G. Zavarise. A mortar formulation for 3D large deformation contact

using NURBS-based isogeometric analysis and the augmented Lagrangian method. Computational

Mechanics, 49(1):1–20, 2012.

[28] M. Matzen, T. Cichosz, and M. Bischoff. A point to segment contact formulation for isogeometric,

NURBS based finite elements. Computer Methods in Applied Mechanics and Engineering, 255:27–39,

2013.

[29] W.A. Wall, M.A. Frenzel, and C. Cyron. Isogeometric structural shape optimization. Computer

Methods in Applied Mechanics and Engineering, 197:2976–2988, 2008.

[30] X. Qian and O. Sigmund. Isogeometric shape optimization of photonic crystals via coons patches.

Computer Methods in Applied Mechanics and Engineering, 200:2237–2255, 2011.

[31] H.-J. Kim, Y.-D. Seo, and S.-K. Youn. Isogeometric analysis for trimmed CAD surfaces. Computer

Methods in Applied Mechanics and Engineering, 198:2982–2995, 2009.

[32] T. Rueberg and F. Cirak. Subdivision-stabilised immersed B-spline finite elements for moving bound-

ary flows. Computer Methods in Applied Mechanics and Engineering, 209–212:266–283, 2012.

[33] D. Schillinger, M. Ruess, N. Zander, Y. Bazilevs, A. Düster, and E. Rank. Small and large deformation

analysis with the p- and B-spline versions of the Finite Cell Method. Computational Mechanics, 50(4),

2012.

[34] E. Rank, M. Ruess, S. Kollmannsberger, D. Schillinger, and A. Düster. Geometric modeling, isogeo-

metric analysis and the finite cell method. Computer Methods in Applied Mechanics and Engineering,

249-250:104–115, 2012.

[35] M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, and E. Rank. Weakly enforced essential boundary

conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell

method. International Journal for Numerical Methods in Engineering, Accepted for publication, 2013.

[36] D. Schillinger, Q. Cai, R.-P. Mundani, and E. Rank. Nonlinear structural analysis of complex CAD

and image based geometric models with the finite cell method. In M. et al. Bader, editor, Lecture

Notes in Computational Science and Engineering. Springer, 2013 (accepted).

[37] R.N. Simpson, S.P.A. Bordas, J. Trevelyan, and T. Rabczuk. A two-dimensional isogeometric bound-

ary element method for elastostatic analysis. Computer Methods in Applied Mechanics and Engineer-

ing, 209–212:87–100, 2012.

[38] M.A. Scott, R.N. Simpson, J.A. Evans, S. Lipton, S.P.A. Bordas, T.J.R. Hughes, and T.W. Sederberg.

Isogeometric boundary element analysis using unstructured T-splines. Computer Methods in Applied

Mechanics and Engineering, 254:197–221, 2013.

101

[39] M.J. Borden, M.A. Scott, J.A. Evans, and T.J.R. Hughes. Isogeometric finite element data structures

based on Bézier extraction of NURBS. International Journal for Numerical Methods in Engineering,

87:15–47, 2011.

[40] M.A. Scott, M.J. Borden, C.V. Verhoosel, T.W. Sederberg, and T.J.R. Hughes. Isogeometric finite

element data structures based on Bézier extraction of T-splines. International Journal for Numerical

Methods in Engineering, 88:126–156, 2011.

[41] M.A. Scott, X. Li, T.W. Sederberg, and T.J.R. Hughes. Local refinement of analysis-suitable T-splines.

Computer Methods in Applied Mechanics and Engineering, 213–216:206–222, 2012.

[42] N. Collier, D. Pardo, L. Dalcin, M. Paszynski, and V.M. Calo. The cost of continuity: a study of

the performance of isogeometric finite elements using direct solvers. Computer Methods in Applied

Mechanics and Engineering, 213–216:353–361, 2012.

[43] N. Collier, D. Pardo, L. Dalcin, and V.M. Calo. The cost of continuity: performance of iterative

solvers on isogeometric finite elements. eprint arXiv:1206.2948, 2012.

[44] S.K. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar. IETI - Isogeometric Tearing and Interconnecting.

Computer Methods in Applied Mechanics and Engineering, 247–248, 2012.

[45] L. Beirão da Veiga, D. Cho, L. Pavarino, and S. Scacchi. Overlapping Schwarz methods for isogeometric

analysis. SIAM Journal on Numerical Analysis, 50(3):1394–1416, 2012.

[46] L. Beirão da Veiga, D. Cho, L. Pavarino, and S. Scacchi. Isogeometric Schwarz preconditioners for

linear elasticity systems. Computer Methods in Applied Mechanics and Engineering, 253:439–454,

2012.

[47] L. Beirão da Veiga, D. Cho, L. Pavarino, and S. Scacchi. BDDC preconditioners for isogeometric

analysis. Mathematical Models and Methods in Applied Sciences, 23(6):1099–1142, 2013.

[48] K.P.S. Gahalaut, J.K. Kraus, and S.K. Tomar. Multigrid methods for isogeometric discretization.

Computer Methods in Applied Mechanics and Engineering, 253:413–425, 2012.

[49] T.J.R. Hughes, A. Reali, and G. Sangalli. Efficient quadrature for NURBS-based isogeometric analysis.

Computer Methods in Applied Mechanics and Engineering, 199:301–313, 2010.

[50] F. Auricchio, F. Calabrò, T.J.R. Hughes, A. Reali, and G. Sangalli. A simple algorithm for obtaining

nearly optimal quadrature rules for NURBS-based isogeometric analysis. Computer Methods in Applied

Mechanics and Engineering, 249–252:15–27, 2012.

[51] F. Auricchio, L. Beirão da Veiga, T.J.R. Hughes, A. Reali, and G. Sangalli. Isogeometric collocation

methods. Mathematical Models and Methods in Applied Sciences, 20(11):2075–1077, 2010.

[52] F. Auricchio, L. Beirão da Veiga, T.J.R. Hughes, A. Reali, and G. Sangalli. Isogeometric collocation

for elastostatics and explicit dynamics. Computer Methods in Applied Mechanics and Engineering,

249–252:2–14, 2012.

[53] M. Bischoff, W.A. Wall, K.-U. Bletzinger, and E. Ramm. Models and Finite Elements for Thin-walled

Structures. In E. Stein, R. de Borst, and T.J.R. Hughes, editors, Encyclopedia of Computational

Mechanics, volume 2, chapter 3, pages 59–137. John Wiley & Sons, 2004.

[54] L. Beirão da Veiga, C. Lovadina, and A. Reali. Avoiding shear locking for the Timoshenko beam prob-

lem via isogeometric collocation methods. Computer Methods in Applied Mechanics and Engineering,

241–244:38–51, 2012.

[55] F. Auricchio, L. Beirão da Veiga, J. Kiendl, C. Lovadina, and A. Reali. Locking-free isogeomet-

102

ric collocation methods for spatial Timoshenko rods. Computer Methods in Applied Mechanics and

Engineering, doi:10.1016/j.cma.2013.03.009, 2013.

[56] A.G. Kravchenko, P. Moin, and R.D. Moser. Zonal embedded grids for numerical simulation of wall-

bounded turbulent flows. Journal of Computational Physics, 127:412–423, 1996.

[57] K. Shariff and R.D. Moser. Two-dimensional mesh embedding for B-spline methods. Journal of

Computational Physics, 145:471–488, 1998.

[58] Y. Bazilevs and I. Akkerman. Large eddy simulation of turbulent Taylor-Couette flow using isogeo-

metric analysis and residual-based variational multiscale method. Journal of Computational Physics,

229:3402–3414, 2010.

[59] Y. Bazilevs, C.M. Michler, V.M. Calo, and T.J.R. Hughes. Isogeometric variational multiscale model-

ing of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes.

Computer Methods in Applied Mechanics and Engineering, 199:780–790, 2010.

[60] A.G. Kravchenko, P. Moin, and K. Shariff. B-spline method and zonal grids for simulation of complex

turbulent flows. Journal of Computational Physics, 151:757–789, 1999.

[61] J.A. Evans and T.J.R. Hughes. Isogeometric divergence-conforming B-splines for the steady Navier-

Stokes equations. Mathematical Models and Methods in Applied Sciences, 23:1421, 2013.

[62] J.A. Evans and T.J.R. Hughes. Isogeometric divergence-conforming B-splines for the unsteady Navier-

Stokes equations. Journal of Computational Physics, 241:141–167, 2013.

[63] B. Bialecki and G. Fairweather. Orthogonal spline collocation methods for partial differential equa-

tions. Journal of Computational and Applied Mathematics, 128:55–82, 2001.

[64] O. Botella. On a collocation B-spline method for the solution of the Navier-Stokes equations. Com-

puters & Fluids, 31:397–420, 2002.

[65] O. Botella. A high-order mass-lumping procedure for B-spline collocation method with application to

incompressible flow simulations. International Journal for Numerical Methods in Fluids, 41:1295–1318,

2003.

[66] R.W. Johnson. A B-spline collocation method for solving the incompressible Navier-Stokes equations

using an ad hoc method: the boundary residual method. Computers & Fluids, 34:121–149, 2005.

[67] R.W. Johnson. Higher order B-spline collocation at the Greville abscissae. Applied Numerical Math-

ematics, 52:63–75, 2005.

[68] D. Schillinger and E. Rank. An unfitted hp adaptive finite element method based on hierarchical

B-splines for interface problems of complex geometry. Computer Methods in Applied Mechanics and

Engineering, 200(47–48):3358–3380, 2011.

[69] A.V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon. A hierarchical approach to adaptive local re-

finement in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 200(49–

52):3554–3567, 2011.

[70] D. Schillinger, L. Dede’, M.A. Scott, J.A. Evans, M.J. Borden, E. Rank, and T.J.R. Hughes. An iso-

geometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS,

immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics

and Engineering, 249-250:116–150, 2012.

[71] D. Schillinger. The p- and B-spline versions of the geometrically nonlinear finite cell method and hier-

archical refinement strategies for adaptive isogeometric and embedded domain analysis. Dissertation,

103

Technische Universität München, http://d-nb.info/103009943X/34, 2012.

[72] B. Bornemann and F. Cirak. A subdivision-based implementation of the hierarchical b-spline finite

element method. Computer Methods in Applied Mechanics and Engineering, 253:584–598, 2013.

[73] D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, and W. Sweldens. Subdivision for modeling

and animation. Technical report, 2000.

[74] J. Warren and H. Weimer. Subdivision Methods for Geometric Design. Morgan Kaufman Publishers,

2002.

[75] H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann Publish-

ers, 2006.

[76] C. Burstedde, L.C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh

refinement on forests of octrees. SIAM Journal on Scientific Computing, 33(3):1103–1133, 2011.

[77] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data structures for

massively parallel generic adaptive finite element codes. ACM Transactions on Mathematical Software,

38(2):14, 2011.

[78] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: The truncated basis for hierarchical splines.

Computer Aided Geometric Design, 29(7):485–498, 2012.

[79] L. Piegl and W. Tiller. The NURBS Book. Springer, 1997.

[80] E. Cohen, R.F. Riesenfeld, and G. Elber. Geometric Modeling with Splines: An Introduction. A K

Peters/CRC Press, 2001.

[81] D.F. Rogers. An Introduction to NURBS with Historical Perspective. Morgan Kaufmann Publishers,

2001.

[82] G. Farin. Curves and surfaces for computer aided geometric design. Morgan Kaufmann Publishers,

2002.

[83] Rhinoceros — NURBS modeling for Windows. http://www.rhino3d.com/, 2012.

[84] B.A. Finlayson and L.E. Scriven. The method of weighted residuals - a review. Applied Mechanics

Reviews, 19:735–748, 1966.

[85] B.A. Finlayson. The Method of Weighted Residuals and Variational Principles. Academic Press, 1972.

[86] G.F. Pinder and A.M. Shapiro. A new collocation method for the solution of the convection-dominated

transport equation. Water resources research, 15:1177–1182, 1979.

[87] G.F. Carey and J.T. Oden. Finite Elements: a Second Course. Prentice-Hall, 1983.

[88] J.S. Chen, L. Wang, H.-Y. Hu, and S.-W. Chi. Subdomain radial basis collocation method for het-

erogeneous media. International Journal for Numerical Methods in Engineering, 80:163–190, 2009.

[89] H.-Y. Hu, J.S. Chen, and W. Hu. Weighted radial basis collocation method for boundary value

problems. International Journal for Numerical Methods in Engineering, 69:2736–2757, 2007.

[90] J.S. Chen, W. Hu, and H.-Y. Hu. Reproducing kernel enhanced local radial basis collocation method.

International Journal for Numerical Methods in Engineering, 75:600–627, 2008.

[91] H.-Y. Hu, J.S. Chen, and W. Hu. Error analysis of collocation method based on reproducing kernel

approximation. Numerical Methods for Partial Differential Equations, 27:554–580, 2011.

[92] N.R. Aluru. A point collocation method based on reproducing kernel approximations. International

Journal for Numerical Methods in Engineering, 47:1083–1121, 2000.

[93] D.W. Kim and W.K. Liu. Maximum principle and convergence analysis for the meshfree point collo-

104

cation method. SIAM Journal on Numerical Analysis, 44(2):515–539, 2006.

[94] R.D. Russell and J.M. Varah. A comparison of global methods for linear two-point boundary value

problems. Mathematics of Computation, 29:1007–1019, 1975.

[95] P.M. Prenter. Splines and Variational Methods. Wiley, 1989.

[96] T.J.R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.

Dover Publications, 2000.

[97] C. de Boor and B. Swartz. Collocation at Gaussian points. SIAM Journal on Numerical Analysis,

10:582–606, 1973.

[98] S. Jator and Z. Sinkala. A high oder B-spline collocation method for linear boundary value problems.

Applied Mathematics and Computation, 191:100–116, 2007.

[99] S. Demko. On the existence of interpolation projectors onto spline spaces. Journal of Approximation

Theory, 43:151–156, 1985.

[100] R.T. Farouki. The Bernstein polynomial basis: A centennial retrospective. Computer Aided Geometric

Design, 29:379–419, 2012.

[101] B. Szabó and I. Babuška. Finite Element Analysis. Wiley, 1991.

[102] Livermore Software Technology Corporation. LS-Dyna 971 R5 user’s manual.

[103] J.A. Evans and T.J.R. Hughes. Discrete spectrum analyses for various mixed discretizations of the

Stokes eigenproblem. Computational Mechanics, 50(6):667–674, 2012.

[104] G.H. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, 1996.

[105] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer,

2008.

[106] C.C. Christara and K.R. Jackson. Numerical methods. In G.L. Trigg, editor, Mathematical Tools for

Physicists. Wiley, 2005.

[107] C. Ashcraft and R. Grimes. Personal communication.

[108] M.H. Sadd. Elasticity. Theory, Applications, and Numerics. Academic Press, 2009.

[109] Trilinos Version 11.0, Sandia National Laboratories, http://trilinos.sandia.gov, 2012.

[110] G. Strang and G.J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, 1973.

[111] Y. Bazilevs, L.B. Da Veiga, J.A. Cottrell, T.J.R. Hughes, and G. Sangalli. Isogeometric analysis:

Approximation, stability and error estimates for h-refined meshes. Mathematical Models and Methods

in Applied Sciences, 16(7):1031–1090, 2006.

[112] D.N. Arnold and W. Wendland. On the asymptotic convergence of collocation methods. Mathematics

of Computation, 41:349–381, 1983.

[113] D.N. Arnold and J. Saranen. On the asymptotic convergence of spline collocation methods for partial

differential equations. SIAM Journal on Numerical Analysis, 21:459–472, 1984.

[114] C.K. Chui. An introduction to wavelets. Academic Press, 1992.

[115] J. Peters and U. Reif. Subdivision surfaces. Springer, 2008.

[116] M. Sabin. Analysis and Design of Univariate Subdivision Schemes. Springer, 2010.

[117] D. Schillinger, S. Kollmannsberger, R.-P. Mundani, and E. Rank. The finite cell method for ge-

ometrically nonlinear problems of solid mechanics. IOP Conference Series: Material Science and

Engineering, 10:012170, 2010.

[118] E. Rank. Adaptive remeshing and h-p domain decomposition. Computer Methods in Applied Mechanics

105

and Engineering, 101:299–313, 1992.

[119] D. Schillinger, A. Düster, and E. Rank. The hp-d adaptive finite cell method for geometrically

nonlinear problems of solid mechanics. International Journal for Numerical Methods in Engineering,

89:1171–1202, 2012.

[120] D. Forsey and R.H. Bartels. Hierarchical B-spline refinement. Computer Graphics (SIGGRAPH ’88

Proceedings), 22(4):205–212, 1988.

[121] R. Kraft. Adaptive and linearly independent multilevel B-splines. In A.L. Méhauté, C. Rabut, and

L.L. Schumaker, editors, Surface Fitting and Multiresolution Methods, pages 209–218. Vanderbilt

University Press, 1997.

[122] K. Höllig. Finite Element Methods with B-Splines. Society for Industrial and Applied Mathematics,

2003.

[123] H. Yserantant. On the multi-level splitting of finite element spaces. Numerische Mathematik, 49:379–

412, 1986.

[124] P. Krysl, E. Grinspun, and P. Schröder. Natural hierarchical refinement for finite element methods.

International Journal for Numerical Methods in Engineering, 56:1109–1124, 2003.

[125] S. Govindjee, J. Strain, T.J. Mitchell, and R. L. Taylor. Convergence of an efficient local least-

squares fitting method for bases with compact support. Computer Methods in Applied Mechanics and

Engineering, 213–216:84–92, 2012.

[126] W. Chen, Y. Cai, and J. Zheng. Generalized hierarchical NURBS for interactive shape modification.

In Proc. of the 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its

Applations in Industry, 2008.

[127] W. Chen, Y. Cai, and J. Zheng. Freeform-based form feature modeling using a hierarchical & multi-

resolution NURBS method. In Proc. of the 9th ACM SIGGRAPH International Conference on Virtual-

Reality Continuum and Its Applations in Industry, 2010.

[128] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method – Fluid Dynamics, volume 3.

Butterworth-Heinemann, 6th edition, 2005.

[129] J. Donea and A. Huerta. Finite Element Methods for Flow Problems. Wiley, 2003.

[130] A.N. Brooks and T.J.R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection

dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer

Methods in Applied Mechanics and Engineering, 32:199–259, 1982.

[131] Y. Bazilevs and T.J.R. Hughes. Weak imposition of dirichlet boundary conditions in fluid mechanics.

Computers & Fluids, 36:12–26, 2007.

[132] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, and T.W.

Sederberg. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and En-

gineering, 199:229–263, 2010.

[133] M.R. Dörfel, B. Simeon, and B. Jüttler. Adaptive isogeometric analysis by local h-refinement with

T-splines. Computer Methods in Applied Mechanics and Engineering, 199:264–275, 2010.

[134] T.J.R. Hughes. A simple scheme for developing upwind finite elements. International Journal for

Numerical Methods in Engineering, 12:1359–1365, 1978.

[135] T.J.R. Hughes, W.K. Liu, and A. Brooks. Finite element analysis of incompressible viscous flows by

the penalty function formulation. Journal of Computational Physics, 30:1–60, 1979.

106

[136] A.M. Shapiro and G.F. Pinder. Analysis of an upstream weighted collocation approximation to the

transport equation. Journal of Computational Physics, 39:46–71, 1981.

[137] S. Adjerid, M. Aiffa, and J.E. Flaherty. Computational methods for singularly perturbed systems. In

AMS Proceedings of Symposia in Applied Mathematics, pages 47–83. American Mathematical Society,

1998.

[138] D. Funaro and G. Pontrelli. Spline approximation of advection-diffusion problems using upwind type

collocation nodes. Journal of Computational and Applied Mathematics, 110:141–153, 1998.

107

