
CES Math Qual Exam 2017
Tuesday, May 30, 2017, 9:00am - noon.

Solve the following six problems in 3 hours.

1. A linear algebra problem. Consider IR3. LetA be the rotation about the x1 axis by an angle α (positive
α corresponds to the “right-hand rule”).

• Write down an explicit formula for map A : IR3 → IR3, x = (x1, x2, x3)→ y = (y1, y2, y3), i.e.
express y in terms of x (and α). Is map A linear ? Explain why ?

• Let ei, i = 1, 2, 3, be the canonical basis for IR3. Write down matrix representation of map A in
basis ei.

• Consider the canonical inner product in IR3,

(x, y) :=
3∑
i=1

xiyi .

Is the map self-adjoint with respect to the inner product ? Explain, why ?

• Consider vectors a1 = e1, a2 = e1 + e2, a3 = e3. Do they form a basis for IR3 ? Explain, why ?

• Write down the matrix representation of map A in the new basis.

• Determine dual basis a∗j , j = 1, 2, 3.

Showing the non-trivial details only. The map:
y1 = x1
y2 = cos θx2 − sin θx3
y3 = sin θx2 + cos θx3

Matrix representation:  1 0 0
0 cos θ − sin θ
0 sin θ cos θ


The matrix is non-symmetric so this is not a self-adjoint map.

Relating the new basis to the old one:

a1 = e1
a2 = e1 + e2
a3 = e3

e1 = a1
e2 = a2 − a1
e3 = a3
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Computing the representation in the new basis:

Aa1 = Ae1 = e1 = a1
Aa2 = Ae1 +Ae2 = e1 + cos θe2 + sin θe3 = (1− cos θ)a1 + cos θa2 + sin θa3
Aa3 = Ae3 = sin θe2 + cos θe3 = − sin θa1 + sin θa2 + cos θa3

to obtain:  1 1− cos θ − sin θ
0 cos θ sin θ
0 sin θ cos θ


Representing x in the new basis:

x = x1e1 + x2e2 + x3e3 = (x1 − x2)a1 + x2a2 + x3a3

so,
a∗1(x) = x1 − x2
a∗2(x) = x2

a∗3(x) = x3
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2. Equivalence of norms on a finite dimensional space. Consider IRN .

• Define the l1 norm ‖x‖1 in IRN and demonstrate that indeed it satisfies the three defining condi-
tions for a norm.

Trivial.

• State the Weierstrass Theorem for an arbitrary topological space.

See the book.

• Let ‖x‖ be now any other norm defined on IRn.

(i) Show that there exists a constant C > 0 such that,

‖x‖ ≤ C‖x‖1 ∀x ∈ IRN

(ii) Use (i) to demonstrate that function

IRN 3 x→ ‖x‖ ∈ IR

is continuous in l1-norm.

(iii) Use the Weierstrass Theorem to conclude that there exists a constant D > 0 such that

‖x‖1 ≤ D‖x‖ ∀x ∈ IRN

Conclude that the l1 norm is equivalent to any other norm on IRN . Explain why the result implies
that any two norms defined on an arbitrary finite-dimensional vector space must be equivalent.

(i) Let ei denote the canonical basis in IRn. Then

‖x‖ = ‖
n∑
i=1

xiei‖ ≤
n∑
i=1

|xi| ‖ei‖ ≤ C
n∑
i=1

|xi|

where
C = max{‖e1‖, . . . , ‖en‖}

(ii) This follows immediately from the fact that

|‖x‖ − ‖y‖| ≤ ‖x− y‖

and property (i).

(iii) The l1 unit ball is compact. Consequently, norm ‖ · ‖ attains a minimum on the l1 unit ball,
i.e.,

C ≤ ‖ x

‖x‖1
‖ ∀x

Positive definitness of the norm implies that C > 0. Multiplying by ‖x‖1/C, we get

‖x‖1 ≤ C−1‖x‖

Take now two arbitrary norms. As each of them is equivalent to norm ‖ · ‖1, they must be
equivalent with each other as well.
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3. Application of Banach Contractive Map Theorem

• State the Contractive Map Theorem. Make sure to list all assumptions.

• Consider the following initial value problem:{
du
dt = (u− 1)2(t− 1), t ∈ (0, T )

u(0) = 1

where, at this point, T is unknown. Use elementary means to solve the problem. Comment on a
maximum T for which the solution exists in interval (0, T ).

• Use the Contractive Map Theorem to prove that the solution exists (kind of after dinner exercise
for this example) and provide a concrete estimate for interval length T . How close can you get
to the optimal T determined in the first step ?

Solution:

• See the book.

• If you separate the variables: ∫ u(t)

1

du

(u− 1)2
=

∫ t

0
(t− 1) dt

and obtain:
1

(1− u)
|u(t)1 =

t(t− 2)

2
|10 =

t(t− 2)

2

then, evaluating the left-hand side at u = 1, you obtain a singular term. So this leads to nowhere.
There are two ways out. The first one is to change the integration bounds to:

1

(1− u)
|u(t)u(ε) =

t(t− 2)

2
|1ε =

(t+ ε− 2)(t− ε)
2

to obtain:
1− u(t) =

1
(t+ε−2)(t−ε)

2 + 1
1−u(ε)

=
2(1− u(ε))

(t+ ε− 2)(t− ε)(1− u(ε)) + 2

Passing with ε→ 0, we see that the right hand side converges to zero. Consequently, u(t) = 1 is
the (constant) solution. The second way out is simply to notice that that u(t) = 1 is the solution
to the problem. Clearly, the solution is determined for any t.

• Integrate both sides of the ODE and use the initial condition to arrive at the equivalent integral
equation:

u(t) = 1 +

∫ t

(u(s)− 1))2 (s− 1) ds︸ ︷︷ ︸
=:Au

Area A-CSE
May 2017
with solutions



Clearly, u(t) is a solution of the equation above if and only if u(t) is a fixed point on operator
A. Let T be a parameter to be specified later. Consider the usual Chebyshev space C[0, T ] with
a subset K ⊂ C[0, T ],

K := {u ∈ C[0, T ] : |u(t)− 1| ≤ 1, t ∈ [0, T ]} .

We shall make sure first that A maps K into itself, i.e. A : K → K is well defined. Assume
u ∈ K. Clearly, the integrand in the definition of A is bounded and, therefore, Au is Lipschitz
continuous. Moreover, assuming T ≤ 1, we have,

|(Au)(t)− 1| ≤ |
∫ t

0
|u(s)− 1|2︸ ︷︷ ︸

≤1

|s− 1|ds ≤ −(1− s)2

2
|t0 =

1

2
− (1− t)2

2
≤ 1

2
< 1 .

Thus, A is well defined if T ≤ 1. Now, investigate under what conditions A is a contraction.

|(Au)(t)− (Av)(t)| ≤ |
∫ t

0

[
(u(s)− 1)2 − (v(s)− 1)2

]
(s− 1) ds|

≤
∫ t

0
|u(s)− v(s)|︸ ︷︷ ︸
≤‖u−v‖

|(u(s)− 1) + (v(s)− 1)|︸ ︷︷ ︸
≤2

|s− 1| ds

≤ (1− (1− T )2)‖u− v‖ .

Consequently, A is a contraction if T < 1. Compare with the analytical solution to see that the
estimate is rather conservative.
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4. Solve the Neumann problem on the disk of radius 1 centered about the origin:

∆u(r, θ) = 0, 0 ≤ r < 1,−π ≤ θ < π,

∂u

∂r
(1, θ) = f(θ), −π ≤ θ < π,

with the necessary condition that ∫ π

−π
f(θ)dθ = 0.

Why is this a necessary condition? Justify. Show in your solution process where this condition comes
into play.

Solution:

The condition on f(θ) is necessary by the Divergence Theorem. Applying the Divergence Theorem
to the differential equation we find

0 =

∫ π

−π

∂u

∂r
dθ =

∫ −π
π

f(θ)dθ.

Using separation of variables we find that the solution should be of the form

u(r, θ) = C +
∞∑
n=1

anr
n cos(nθ) + bnr

n sin(nθ).

Then
∂u

∂r
(1, θ) = f(θ) =

∞∑
n=1

nan cos(nθ) + nbn sin(nθ).

This is a Fourier-type expansion of f(θ). The constant term in this expansion is∫ π

−π
f(θ)dθ

and this must be zero for the Fourier expansion to be valid. The coefficients are

an =
1

nπ

∫ π

−π
f(ξ) cos(nξ)dξ

and
bn =

1

nπ

∫ π

−π
f(ξ) sin(nξ)dξ

The constant C is undetermined and the solution is unique only up to a constant.
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5. Find the inverse Laplace transform (using the Residue Theorem and complex integration) for the
function

f(s) =
1

(s2 − 4)(s− 1)2
, s ∈ IC

for t > 0.

Solution:

The inverse Laplace transform is
1

2πi

∫ γ+i∞

γ−i∞
F (s)estds

for γ sufficiently large. We consider the contour integral 1
2πi

∫
C F (s)estds over a contour C that goes

from γ − iR to γ + iR and closes by a semicircle CR to the left with R large enough so that all poles
are inside the contour. The poles of F (s) are at 2,−2 and a pole of strength 2 at s = 1. Therefore we
take γ > 2. Applying the Residue Theorem we get

res2F (s)est =
1

4
e2t

res−2F (s)est = − 1

36
e−2t

res1F (s)est =
1

3
tet − 2

9
et.

On CR the integral is O(R−3) thus it goes to zero as R → ∞ and the contour integral converges to
the inverse transform. Therefore

f(t) =
1

4
e2t − 1

36
e−2t − 1

3
tet − 2

9
et
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6. Find the Principal Solution (Green’s function) for the Helmholtz operator ∆ + k2I on IR2 up to a
multiplicative constant.

Solution:

Switching to polar coordinates and using the fact that the solution should be angle-independent, we
get that the solution G should satisfy

Grr +
1

r
Gr + k2G = 0

away from the δ point. Multiplying by r2 and defining r′ = kr we see that this is a Bessel equation
of order zero in r′. Therefore

G = AJ0(kr) +BY0(kr)

The function which has the right behavior as r → 0 is the function Y0, therefore we conclude that G
is proportional to Y0(kr). The constant B turns out to be 1/4.
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CES Math Qual Exam 2018
Thursday, May 31, 2018, 9:00 am - noon.

Solve the following six problems in 3 hours.

1. A linear algebra problem. Let ω = (1, 1, 1) ∈ IR3. Consider the map:

IR3 3 x→ y = Ax := ω × x ∈ IR3 .

• Prove that map A is linear.

• Find the matrix representation of map A in the canonical basis ei.

• Determine inverse map A−1.

• Determine transpose map AT and its matrix representation with respect to (wrt) the dual basis
e∗j .

• Determine adjoint map A∗ with respect to canonical inner product in IRn.

• Consider a weighted inner product in IR3:

(x,y)w := x1y1 + 2x2y2 + 3x3y3 ,

and determine the adjoint of A wrt to the weighted inner product.

Solution:

• This follows immediately from the fact that the cross product is a bilinear operation. It also
follows from its explicit representation: y1

y2

y3

 =

 0 −1 1
1 0 −1
−1 1 0

  x1

x2

x3

 .

• See above.

• It does not exist. A has a non-trivial null space,

N (A) = {αω = (α, α, α) : α ∈ IR} .

• Matrix representation of AT in the canonical dual basis equals simply the transpose of matrix
representation of A,

AT ==

 0 1 −1
−1 0 1

1 −1 0

 = −A



• Just the transpose, A∗ = AT = −A. A is so-called skew-adjoint.

• This is the only part where you have to do some work.

(Ax,y)w = (x3 − x2)y1 + 2(x1 − x3)y2 + 3(x2 − x1)y3

= x1(2y2 − 3y3) + x2(−y1 + 3y3) + x3(y1 − 2y2)

= x1(2y2 − 3y3) + 2x2(−1
2y1 + 3

2y3) + 3x3(1
3y1 − 2

3y2)

= (x, A∗y)w

so the matrix representation of the new adjoint in the canonical basis is: 0 2 −3

−1
2 0 3

2

1
3 −2

3 0

 .



2. An integration exercise.

• State the Lebesgue Dominated Convergence Theorem.

• Let Ω ⊂ IRn be an arbitrary unbounded open set, and let f ∈ L1(Ω). Prove that∫
Ω−B(0,n)

f(x) dx→ 0 as n→∞ .

where B(0, n) denotes the ball centered at 0 with radius n.

Solution:

• See the book.

• Consider

fn(x) :=

{
0 x ∈ Ω ∩ B̄(0, n)

f(x) x ∈ Ω−B(0, n)

Obviously, fn(x) → 0 as n → ∞, and |fn(x)| ≤ |f(x)|, so |f(x)| provides a dominating
function. By the Lebesque Theorem,∫

Ω−B(0,n)
f(x) dx =

∫
Ω
fn(x) dx→ 0 .



3. Application of Banach Contractive Map Theorem.

• State the Contractive Map Theorem. Make sure to list all assumptions.

• Consider the following initial value problem:{
dx
dt = 1

3x
−2(t− 1)−1, t ∈ (0, T )

x(0) = 1

where, at this point, T is unknown. Use elementary means to solve the problem. Comment on a
maximum T for which the solution exists in interval (0, T ).

• Use the Contractive Map Theorem to prove that the solution exists (kind of after dinner exercise
for this example) and provide a concrete estimate for interval length T .

Solution:

• See the book.

• Use separation of variables to obtain:

3x2dx =
dt

x− 1

to obtain:
x3|x(t)

1 = ln |t− 1||t0 ,

and, finally,
x(t) = [ln |t− 1|+ 1]

1
3 .

Verify that the solution indeed satisfies the ODE and IC. The solution has a blow up at t = 1.

• The IVP is equivalent to the integral equation:

x(t) = 1 +
1

3

∫ t

0
x−2(s) (s− 1)−1 ds =: (Ax)(t)

and x(t) is a solution to the integral eqn iff it is a fixed point of operator A. More precisely, we
will identify a set D ⊂ C([0, T ]) (with T to be determined !) such that a) A is well defined, i.e.
it maps D into itself, and b) A is a contraction on D.

The flux f(x, s) = 1
3x
−2(t− 1)−1 is undefined for x = 0 and t = 1. This motivates use to seek

T < 1 and define,

D := {x ∈ C([0, T ]) : x(t) ≥ 1

2
} .

The 1
2 in the definition above is somehow arbitrary, could have used any positive constant. Def-

inition of D is consistent with the IC and all functions from D are bounded pointwise by 2.
Condition a) requires that

1 +
1

3

∫ t

0
x−2(s)(s− 1)−1 ds ≥ 1

2
for t < T .



Equivalently,

|
∫ t

0
x−2(s)(s− 1)−1 ds| ≤ 3

2

Working on the sufficient side, we get

|
∫ t

0
x−2(s)(s− 1)−1 ds| ≤

∫ t

0
|x−2(s)|︸ ︷︷ ︸
≤4

|(s− 1)−1| ds ≤ 4

∫ t

0

ds

1− s
= −4 ln(1− t) ≤ 3

2
.

or, equivalently,

− ln(1− t) ≤ 3

8
.

Condition b) requires that

|x1(t)− x2(t)| ≤
∫ t

0
|x−2

1 (s)− x−2
2 (s)|(1− s)−1 ds ≤ C‖x1 − x2‖C([0,T ])

with C < 1. By the Mean-Value Theorem, for f(x) = x−2,

f(x2)− f(x1) = f ′(ξ)(x2 − x1) where ξ ∈ (x1, x2) ,

with f ′(x) = −2x−3 and | − 2x−3| ≤ 16 for x ∈ D. Consequently, the integral above is
estimated by,

16

3

∫ t

0

ds

1− s︸ ︷︷ ︸
=− ln(1−t)

max
t∈[0,T ]

|x1(t)− x2(t)|︸ ︷︷ ︸
=‖x1−x2‖C([0,T ])

so the contraction condition is satisfied if

− ln(1− t) < 3

16
.

Of the two conditions, the second one is more restrictive and it leads to the final condition for T ,

T < 1− e−
3
16 .



4. Let u and w be two scalar fields in R2.

• Consider a rectangular domain Ω = (a1, a2)×(b1, b2) ⊂ R2, i.e, if (x, y) ∈ Ω then a1 ≤ x ≤ a2

and b1 ≤ y ≤ b2. First prove that∫
Ω

∂u

∂y
w dΩ = −

∫
Ω
u
∂w

∂y
dΩ +

∫
∂Ω
uw ny ds,

where ny is the y-component of the unit outward normal vector n on the boundary ∂Ω.

• Using the above (and/or similar) result to prove the following First Green Identity∫
Ω
∇ · Fw dΩ = −

∫
Ω
F · ∇w dΩ +

∫
∂Ω

F · nw ds,

where F is a vector field in R2.

• Derive the Gauss divergence theorem∫
Ω
∇ · F dΩ =

∫
∂Ω

F · n ds,

Solution:

• We have ∫
Ω

∂u

∂y
w dΩ =

∫ a2

a1

(∫ b2

b1

∂u

∂y
w dy

)
dx

=

∫ a2

a1

(
−
∫ b2

b1

u
∂w

∂y
dy + u (x, b2)w (x, b2)− u (x, b1)w (x, b1)

)
dx

= −
∫

Ω
u
∂w

∂y
dΩ +

∫
∂Ω
uw ny ds,

where we have used the fact that ny = −1, 0, 1 on the lower y-boundary, x-boundaries, and
upper y-boundary, respectively. Here, we also use the fact that dx = −nyds on these boundaries.

• Easy: ∫
Ω

∂F1

∂x
w dΩ = −

∫
Ω
F1
∂w

∂x
dΩ +

∫
∂Ω
F1wnx ds,

∫
Ω

∂F2

∂y
w dΩ = −

∫
Ω
F2
∂w

∂y
dΩ +

∫
∂Ω
F2wny ds,

• take w = const



5. Consider a flexible string with mass density (mass per unit length) ρ(x) tied between x = 0 and x = `.
The string is assumed to be under a constant tension τ at any point along the string at any time. It can
be shown that the potential energy and the kinetic energy of the string are given by

V =
τ

2

∫ `

0
y2
x dx, and T =

1

2

∫ `

0
ρ (x) y2

t dx,

where y is the vertical displacement of the string, yx and yt are partial derivative of y with respect to
x and t.

• According the Hamilton’s principle, the equation of motion of the string is given by the Euler-
Lagrange equation of the following functional∫ T

0
(T − V ) dt.

Derive in details the equation of motion for the string.

• Now assume the density ρ is constant. Solve in details for the displacement of the string given
the initial displacement

y0 (x) = sin

(
2π

`
x

)
,

and zero initial velocity yt (x) = 0.

Solution:

• For
I =

∫
t

∫
x
f (x, t, y, yx, yt) dx dt,

the Euler-Lagrange equation for fixed end points of y is given as

∂f

∂y
− ∂

∂x

(
∂f

∂yx

)
− ∂

∂t

(
∂f

∂yt

)
= 0.

Applying this result for our case yields

τyxx − ρytt = 0,

which is the wave equation.

• Solve the wave equation using separation of variables

y = v(x)w(t)

to get to
v′′

v
=

1

α2

w′′

w
= −k2,



where α2 = τ
ρ . We then have

vn = sin
(nπ
`
x
)
, wn = cos

(αnπ
`
t
)
,

and the general solution is then

y(x, t) =
∑
n

en sin
(nπ
`
x
)

cos
(αnπ

`
t
)
.

For

y0 (x) = sin

(
2π

`
x

)
,

only one term survives and hence the solution is

y(x, t) = sin

(
2π

`
x

)
cos

(
α2π

`
t

)
.



6. Let Ω = (0, 1)× (0, 1).

• Solve in details the following eigenvalue problem

−∆w = λw in Ω

with the homogeneous boundary condition w (x, y) = 0 on ∂Ω. Moreover, show that the oper-
ator −∆ with homogeneous boundary condition is a self-adjoint operator. As a result, argue in
details that “any function” v (x, y) can be expressed as

v (x, y) =

∞,∞∑
m=1,n=1

vmnφmn (x, y) ,

where φmn (x, y) are eigenfunctions of −∆ and vmn are coefficients in the expansion.

• Denote (φmn (x, y) , λmn) as eigenpairs of the previous question. Consider the following PDE

−∆w = f (x, y) in Ω,

and boundary condition w (x, y) = 0 on ∂Ω. Solve in details for the solution of this equation
for a general f (x, y) and then deduce the solution for f (x, y) = 2sin (πx) sin (2πy).

HINT: You may want to use the following

f (x, y) =

∞,∞∑
m=1,n=1

fmnφmn (x, y) ,

and

−∆v (x, y) = −
∞,∞∑

m=1,n=1

vmn∆φmn (x, y) =

∞,∞∑
m=1,n=1

vmnλmnφmn (x, y) .

Solution:

• By separation of variables w = X(x)Y (x), we conclude that

λmn = π2
(
m2 + n2

)
, φmn = sin (mπx) sin (nπy) .

The self-adjointness is clear by integration by parts two times

• Using the hint and the orthogonality of the eigenfunctions, we conclude that

wmn =
fmn
λmn

,

and for f (x, y) = 2sin (πx) sin (2πy), we see that

w =
f12

λ12
sin (πx) sin (2πy) =

2

5π2
sin (πx) sin (2πy)



CSEM Preliminary Exam - Area A-CSE 

Solve the following six problems in 3 hours.

1. A linear algebra problem. Let a = (1, 1, 1) ∈ IR3. Consider the map:

IR3 3 x→ y = Ax := a(a · x) ∈ IR3

where the “dot” denotes the canonical inner product in IR3.

• Prove that map A is linear.

• Find the matrix representation of map A in the canonical basis ei.

• Determine rank and the null space of A.

• Determine transpose map AT and its matrix representation with respect to (wrt) the dual basis
e∗j .

• Determine adjoint map A∗ with respect to canonical inner product in IRn.

• Consider a weighted inner product in IR3:

(x,y)w := x1y1 + 2x2y2 + 3x3y3 ,

and determine the adjoint of A wrt to the weighted inner product.
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• Matrix representation of AT in the canonical dual basis equals simply the transpose of matrix
representation of A,

AT = A .

• Just the transpose, A∗ = AT = A. A is self-adjoint.

• This is the only part where you have to do some work.

(Ax,y)w = (x1 + x2 + x3)y1 + 2(x1 + x2 + x3)y2 + 3(x1 + x2 + x3)y3

= x1(y1 + 2y2 + 3y3) + x2(y1 + 2y2 + 3y3) + x3(y1 + 2y2 + 3y3)

= x1(y1 + 2y2 + 3y3) + 2x2
1

2
(y1 + 2y2 + 3y3) + 3x3

1

3
(y1 + 2y2 + 3y3)

= (x, A∗y)w

so the matrix representation of the new adjoint in the canonical basis is: 1 2 3

1
2 1 3

2

1
3

2
3 1

 .
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2. A topology exercise.

• Define the notion of equivalent norms and explain why any two equivalent norms generate the
same (norm) topology.

• Recall that any two norms defined on a finite-dimensional space are equivalent, consider two
norms on IRN :

‖x‖1 :=
N∑
i=1

|xi| ‖x‖p := (
N∑
i=1

|xi|p)1/p, p > 1 ,

and estimate the corresponding equivalence constants.

Solution:

• See the book.

• We need to find constants C1 and C2 such that

‖x‖p ≤ C1‖x‖1 and ‖x‖1 ≤ C2‖x‖p .

Let us start with the first one. As both norms are homogenous1, it is sufficient to prove the
inequality for x that are unit in norm ‖ · ‖1, i.e.

N∑
i=1

|xi| = 1 ⇒ |xi| ≤ 1, i = 1, . . . , N .

This implies that (p > 1),

|xi|p ≤ |xi| ⇒
N∑
i=1

|xi|p ≤
N∑
i=1

|xi| = 1

and, consequently,

(

N∑
i=1

|xi|p)1/p ≤ 1 =

N∑
i=1

|xi| ,

so C1 ≤ 1. We proceed similarly with the second inequality, normalizing both sides this time
with ‖x‖p. We have,

‖x‖p = (
∑N

i=1 |xi|p)1/p = 1 ⇒
∑N

i=1 |xi|p = 1 ⇒ |xi|p ≤ 1, i = 1, . . . , N

⇒ |xi| ≤ 1, i = 1, . . . , N .

This implies that

‖x‖1 =
N∑
i=1

|xi| ≤ N = N‖x‖p

so we have the estimate:
C2 ≤ N .

1We can divide both sides by ‖x‖1.
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3. Application of Banach Contractive Map Theorem.

• State the Contractive Map Theorem. Make sure to list all assumptions.

• Consider the following initial value problem:{
dx
dt = t

x+1 , t ∈ (0, T )

x(0) = 1

where, at this point, T is unknown. Use elementary means to solve the problem. Comment on a
maximum T for which the solution exists in interval (0, T ).

• Use the Contractive Map Theorem to prove that the solution exists (kind of after dinner exercise
for this example) and provide a concrete estimate for interval length T .

Solution:

• See the book.

• Use separation of variables to obtain:

(x+ 1)dx = tdt

which leads to
(x+ 1)2

2
|x1 =

t2

2
|t0

and, finally,
x(t) = −1±

√
4 + t2 .

Solution with the minus sign does not satisfy the IC so it must be rejected. We obtain,

x(t) = −1 +
√

4 + t2 .

Verify that the solution indeed satisfies the ODE and IC. The solution exists for any T > 0.

• The IVP is equivalent to the integral equation:

x(t) = 1 +

∫ t

0

s

x(s) + 1
ds =: (Ax)(t)

and x(t) is a solution to the integral eqn iff it is a fixed point of operator A. More precisely, we
will identify a set D ⊂ C([0, T ]) (with T to be determined !) such that a) A is well defined, i.e.
it maps D into itself, and b) A is a contraction on D.

The flux f(x, s) = s
x+1 is undefined for x = −1. This motivates to define,

D := {x ∈ C([0, T ]) : x(t) ≥ 0} .
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Definition of D is consistent with the IC. Condition a) is now automatically satisfied for any T .
Indeed,

x ∈ D ⇔ x(s) ≥ 0 ⇒ s

x(s) + 1
≥ 0 ⇒ (Ax)(t) ≥ 0 ∀t ⇒ Ax ∈ D .

Condition b) requires that

|(Ax1)(t)− (Ax2)(t)| = |
∫ t

0

(
s

x1(s) + 1
− s

x2(s) + 1

)
ds|

?
≤ C max

t∈[0,T ]
|x1(t)− x2(t)|︸ ︷︷ ︸
=:‖x1−x2‖

,

with C < 1. For x1, x2 ∈ D, we have,

| s

x1 + 1
− s

x2 + 1
| = | s(x2 − x1)

(x1 + 1)(x2 + 1)
| ≤ s‖x1 − x2‖ .

Consequently,

|
∫ t

0

(
s

x1(s) + 1
− s

x2(s) + 1

)
ds| ≤

∫ t

0
s ds ‖x1 − x2‖ =

t2

2
‖x1 − x2‖ .

For
T 2

2
< 1 ⇔ T <

√
2

operator A is a contraction.
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4. Figure 1 presents a mapping between a reference triangle (I) in ξ = (r, s)-coordinates (computa-
tional) and an arbitrary triangle (D) described by three given vertices v1 =

(
x1, y1

)
,v2 =

(
x2, y2

)
,v3 =(

x3, y3
)

in the x = (x, y)-coordinates.

This mapping is pervasive in numerical methods for partial differential equations, especially the finite
element methods. For this case, the map from computational domain I to the physical domain D is
given as

x = (x, y) = Ψ (r, s) = −r + s

2
v1 +

r + 1

2
v2 +

s+ 1

2
v3

Figure 1: Mapping between computational triangle in the (r, s)-coordinates and the physical triangle in the
(x, y) coordinates.

• Show that gi ·gj = δij , where gj , j = 1, 2 are covariant vectors and gi, i = 1, 2 are contravariant
vectors

• Express the covariant and contravariant vectors in terms of vk, k = 1, 2, 3.

• Let v1 = (0, 0) ,v2 = (1, 1) ,v3 = (0, 1). Which point (x∗, y∗) in D is (r, s) = (0, 1/2) ∈ I
mapped to? Compute the covariant and contravariant vectors at (x∗, y∗) and plot these vectors
inD.

Part II - CSE 386L
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• See in lecture notes, in particular:

∂ξ

∂x
· ∂x
∂ξ

=

[
rx ry
sx sy

]
×
[
xr xs
yr ys

]
=

[
1 0
0 1

]
• From the transformation and the definition, the covariant vectors are

g1 = (xr, yr) =
v2 − v1

2
, g2 = (xs, ys) =

v3 − v1

2
.

Using the result from the first question we have

g1 = (rx, ry) =
1

J
(ys,−xs) , g2 = (sx, sy) =

1

J
(−yr, xr) ,

where
J = xrys − xsyr.

• Substitution of (r, s) = (0, 1/2) into the transformation gives (x∗, y∗) = (1/2, 5/4). Similarly
we have

g1 = (1/2, 1/2), g2 = (0, 1/2), J = 1/4

and
g1 = (2, 0), g2 = (−2, 2).

Solution:
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5. Solve for the temperature u (r, θ, t) of the unsteady conduction problem in a circular disk

α2∇2u = ut in 0 ≤ r < a, 0 < t <∞

u(r, θ, 0) = u0, u(a, θ, t) = u0 + u0 cos θ

for u(r, θ, t). Expansion coefficients can be left undetermined.

Note: The following fact may be useful. The solution of the nth-order Bessel’s differential equation

x2
d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0

is given by y(x) = AJn(x) + BYn(x) where A,B are constants and Jn, Yn are Bessel functions of
first and second kind respectively. Also Yn → −∞ as x→ 0.

Solution:

It is exercise 26.28c in the book, the solution is already provided.
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6. Compute

I (t) =

ˆ σ+i∞

σ−i∞

est

s2 + b2
ds,

where σ > 0 and b ∈ R is given.

Solution:

It is exercise 15.11 in the book, the solution is already provided.
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CSE Area A Exam 2020

1. Let A be a countable set, and let Bn be the set of all n-tuples (a1, . . . , an) where ak ∈ A
and the elements a1, . . . , an need not be distinct. Prove that Bn is countable.

2. Let T ∈ L(V,W ), where V and W have inner products (·, ·)V and (·, ·)W , respectively.

Let T ∗ denote the adjoint of T .

• Define the adjoint, show that it is a linear transformation, and that it is unique.

• Suppose V = IR2 with inner product (x,y)V = x1y1 + 2x2y2 and W = IR3 with

inner product (u,v)W = u1v1 +u2v2 +u3v3. Suppose T has matrix representation

in the standard basis

T =

 1 0
1 2
−1 1


Find the adjoint matrix T ∗ : W → V .

3. Let f : X → Y be a bijection and S ⊂ P(X) a σ−algebra. Prove that f(S) = {f(A) :

A ∈ S} is a σ−algebra in Y .
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4 Figure 1 presents a mapping between a reference triangle (I) in ξ = (r, s)-coordinates (computa-
tional) and an arbitrary triangle (D) described by three given vertices v1 =

(
x1, y1

)
,v2 =

(
x2, y2

)
,v3 =(

x3, y3
)

in the x = (x, y)-coordinates.

This mapping is pervasive in numerical methods for partial differential equations, especially the finite
element methods. For this case, the map from computational domain I to the physical domain D is
given as

x = (x, y) = Ψ (r, s) = −r + s

2
v1 +

r + 1

2
v2 +

s+ 1

2
v3

Figure 1: Mapping between computational triangle in the (r, s)-coordinates and the physical triangle in the
(x, y) coordinates.

• Express the covariant and contravariant vectors in terms of vk, k = 1, 2, 3.

• Let u (x) = (u1 (x) , u2 (x)) be a vector field in the physical domainD. Recall the divergence
of u in the physical domain is given by

∇x · u =
∂u1
∂x

+
∂u2
∂y

.

Let
∇ξ · u =

∂u1
∂r

+
∂u2
∂s

be the divergence of u in the computational domain.

Derive an identity relating∇ξ · u and ∇x · u.
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• Let v1 = (0, 0) ,v2 = (1, 1) ,v3 = (0, 1). Compute the area ofD using the above parametriza-
tion and the computational domain I .

5 Solve the following problem:

ytt = ayxx, −∞ < x <∞

0 < t <∞

a =

{
a1 x < 0
a2 x ≥ 0

Consider an initial wave on the right, given by a function F (x), which travels to the left (see Fig. 2).
Find the displacement of the string.

What is the solution if a2 = 0?

Figure 2: Wave traveling on an infinite string with non-uniform material.

6 We seek the curve y(x) from (0, 0) to (a, b) along which a bead of mass m will descend under the
action of gravity (no friction) in the shortest time (see figure). Note that from conservation of energy,

the bead’s velocity is v =
√
2gy. Show that the variational problem may be stated as: Find y(x) that

mininizes ˆ a

0

√
1 + (y′)2

2gy
dx

subject to
y(0) = 0, y(a) = b.

Find the Euler equation and integrate the Euler equation once to show that

y′ =

√
1− Cy

Cy
.
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Hint: To show this you may need to show the following first:

If f = f(y, y′) does not depend explicitly on x, then the Euler equation

∂f

∂y
− d

dx

[
∂f

∂y′

]
= 0

admits the first integral

f − y′
∂f

∂y′
= constant.
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CSEM Area A-CSE Preliminary Exam 2021

1. Consider rotation around the y-axis by an angle θ in the three-dimensional space depicted in Fig. 1.

Figure 1: Rotation about the y-axis.

• Write down the explicit formula for the rotation as a map R : R3 → R3.

• Prove that R is a linear map.

• Determine matrix representation of mapR in the canonical basis e1 = (1, 0, 0), e2 = (0, 1, 0), e3 =

(0, 0, 1).

• Consider the canonical inner product in R3,

(x, y) = x1y1 + x2y2 + x3y3 ,

and determine the adjoint map to R with respect to this inner product. Is R an isometry ?
Explain.

• Compute the adjoint of R with respect to a different, weighted inner product:

(x, y)w = 3x1y1 + 2x2y2 + x3y3 .

Is R an isometry with respect to this new inner product ?

Solution:

•
R(x1, x2, x3) = (x1 cos θ − x3 sin θ, x2, x1 sin θ + x3 cos θ) .
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• This is straightforward and, in particular, follows immediately from the following matrix repre-
sentation.

•  y1

y2

y3

 =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

  x1

x2

x3

 .

• Matrix representation of the adjoint R∗ with respect to (wrt) the canonical inner product coin-
cides with the transpose of the matrix representation of R and it represents the same rotation but
by angle −θ. R is an isometry wrt to the canonical inner product as it preserves the Euckidean
norm (the length of vector).

• We need to have,
(Rx, y)w = (x,R∗y)w .

Accordingly,

(Rx, y)w = 3(x1 cos θ − x3 sin θ)y1 + 2x2y2 + (x1 sin θ + x3 cos θ)y3

= 3x1(cos θy1 + 1
3 sin θy3) + 2x2y2 + x3(−3 sin θy1 + cos θy3)

gives:

R∗y = (cos θy1 +
1

3
sin θy3, y2,−3 sin θy1 + cos θy3) .

R is no longer an isometry wrt the weighted inner product. It is easy to check that

‖Rx‖2w − ‖x‖2w = (Rx,Rx)w − (x, x)w 6= 0 .
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2. Show that any two norms ‖ · ‖p, ‖ · ‖q, 1 ≤ p, q ≤ ∞ in space Rn are equivalent, i.e. there exist
constants C1, C2 such that

‖x‖p ≤ C1‖x‖q and ‖x‖q ≤ C2‖x‖p ∀x ∈ Rn .

Solution: It is sufficient to show that any p-norm, for p ∈ [1,∞), is equivalent with the∞-norm.
We have,

|xi| ≤ (
n∑

j=1

|xj |p)
1
p =: ‖x‖p i = 1, . . . , n

and, therefore,
‖x‖∞ := max

i=1,...,n
|xi| ≤ ‖x‖p .

On the other side,

‖x‖p = (

n∑
i=1

|xi|p)
1
p

≤ (

n∑
i=1

‖x‖p∞)
1
p = (n‖x‖p∞)1/p

≤ n1/p‖x‖∞ .
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3. Consider an initial-value problem:


q ∈ C([0, T ]) ∩ C1(0, T )

q̇ = t/ln(q)

q(0) = 2

Use the Contractive Map Theorem to determine a concrete value of T for which the problem has a
unique solution.

Solution: The problem is equivalent to the integral equation:

q(t) = 2 +

ˆ t

0

s ds

ln q(s)
.

Consider the Chebyshev space C([0, T ]) and a subset B ⊂ C([0, T ]),

B := {q ∈ C([0, T ]) : q(t) ≥ 2 t ∈ [0, T ]} .

Define a nonlinear map,

A : B → B (Aq)(t) = 2 +

ˆ t

0

s ds

ln q(s)
.

The map is well defined for any value of T , i.e., it takes set B into itself. This follows from the fact
that for q ∈ B, the integrand is positive and, therefore, (Aq)(t) ≥ 2.
We invesitigate now under what additional condition, map A is a contraction. Consider function,

F (q) =
1

ln q
, q ≥ 2

We have,

|dF
dq
| = | − 1

q ln2 q
| ≤ 1

2 ln2 2
for q ≥ 2 .

Consequently, by the mean-value theorem, function F (q) is Lipshitz continuous,

|F (q1)− F (q2)| = |F ′(c)(q1 − q2)| ≤ |F ′(c)| |q1 − q2| ≤
1

2 ln2 2
|q1 − q2| , for 2 ≤ q2 < q1 .

This gives:

|(Aq1)(t)− (Aq2)(t)| = |
ˆ t

0

(
1

ln q1(s)
− 1

ln q2(s)

)
ds|

≤
ˆ t

0
s

1

2 ln2 2
(q1(s)− q2(s)) ds

≤ t

2 ln2 2
‖q1 − q2‖∞ .

Consequently,

‖(Aq1)− (Aq2)‖∞ = sup
t∈[0,T ]

|(Aq1)(t)− (Aq2)(t)| ≤ T

2 ln2 2
‖q1 − q2‖∞ .

Therefore, for any T < 2 ln2 2, map A : B → B is a contraction and, by the Banach Contractive Map
Theorem, the integral equation has a unique solution.

Area A-CSE
2021



4. Fig. 2 presents a mapping between a reference triangle (I) in ⇠ = (r, s)-coordinates (computational)
and an arbitrary triangle (D) described by three given vertices v1 =

�
x1, y1

�
,v2 =

�
x2, y2

�
,v3 =�

x3, y3
�

in the x = (x, y)-coordinates.

This mapping is pervasive in numerical methods for partial differential equations, especially the finite
element methods. For this case, the map from computational domain I to the physical domain D is
given as

x = (x, y) =  (r, s) = �r + s

2
v1 +

r + 1

2
v2 +

s+ 1

2
v3

Figure 2: Mapping between computational triangle in the (r, s)-coordinates and the physical triangle in the
(x, y) coordinates.

• Let gj , j = 1, 2 and gi, i = 1, 2 be covariant vectors and contravariant vectors, respectively.
Express gj , j = 1, 2 in terms of gi, i = 1, 2, and the Jacobian J = det [g1, g2], where det
denotes the determinant and [g1, g2] is the matrix whose columns are the covariant vectors.

• Express the covariant and contravariant vectors in terms of vk, k = 1, 2, 3.

• Consider the following divergence free equation (modeling incompressible flow with flow field
u (x)):

rx · u (x) = 0, in D, (0.1)

where rx· denotes the divergence operator in the s, i.e.,

rx · u (x) =
@u

@x
+

@u

@y
.

We are interested in expressing equation (0.1) in the reference domain I as it is “typically easier”
to solve. Derive the equivalent equation in the references domain in terms of @u

@r ,
@u
@s ,v

1,v2,v3,
and J .

X EE i
Xx
Du
En OED s
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Solution:

• See in lecture notes, in particular:

∂ξ

∂x
· ∂x
∂ξ

=

[
rx ry
sx sy

]
×
[
xr xs
yr ys

]
=

[
1 0
0 1

]
• From the transformation and the definition, the covariant vectors are

g1 = (xr, yr) =
v2 − v1

2
, g2 = (xs, ys) =

v3 − v1

2
.

Using the result from the first question we have

g1 = (rx, ry) =
1

J
(ys,−xs) , g2 = (sx, sy) =

1

J
(−yr, xr) ,

where
J = xrys − xsyr.

• Substitution of (r, s) = (0, 1/2) into the transformation gives (x∗, y∗) = (1/2, 5/4). Similarly
we have

g1 = (1/2, 1/2), g2 = (0, 1/2), J = 1/4

and
g1 = (2, 0), g2 = (−2, 2).
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5. Consider the following partial differential equation.

∂u

∂t
= α2∂

2u

∂x2
in (0, `) ,

u (0, t) = uL,

u (`, t) = uR,

u (x, 0) = u0 (x) ,

where α, `, uL, uR are given numbers and u0 (x) is a given function of x. Determine a solution to the
initial-boundary-value problem. Show that the solution you have found is unique. (Hint: To show the
uniqueness, the energy method discussed in class may be useful.)

Solution:

It is exercise 26.28c in the book, the solution is already provided.
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6. Consider the variational problem over a square domain Ω = [−1, 1]× [−1, 1] ⊂ R2 and w ∈ C1(Ω):

min
w
I(w), I(w) =

ˆ
Ω

[
1

2

(
∂w

∂x

)2

+
1

2

(
∂w

∂y

)2
]
dxdy

subject to w|∂Ω = f(x, y)

• Derive the Euler-Lagrange equation for the variational problem.

• Find a minimizer for f(x, y) = 0. Is it unique ? (Hint: To show the uniqueness, the energy
method that we discussed in class may be useful.)

Solution:

It is exercise 15.11 in the book, the solution is already provided.
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CSEM Area A-CSE Preliminary Exam 2022

1. A linear algebra “sanity check”.

Consider R3. Let A be the mirror (symmetry) transformation with respect to plane x1+x2 = 0 (think
about a mirror placed in this position and the transformation that maps a point P into its mirror image
P ′).

(a) Is A a linear map ? Explain.

(b) Write down the matrix representation for map A in the canonical basis.

(c) Explain why all linear maps from R3 into itself - L(R3,R3), form a vector space. What is the
dimension of the space ?

(d) Do the mirror transformations (with respect an arbitrary plane passing through the origin) form
a vector subspace of L(R3,R3)? Explain your answer. If yes, what is the dimension of this
subspace ?

(e) Define adjoint for a linear operator in a general Hilbert setting.

(f) Compute the adjoint of map A with respect to the canonical inner product in R3. Is A a self-
adjoint map ?

(g) Define an orthonormal matrix.

(h) Is matrix representation of map A (any mirror transformation) an orthonormal matrix ? Explain,
why ?

(20 points)

Answers:

(a) Yes, it is. Operations of taking a mirror image and multiplication by a number, commute. Simi-
larly, vector addition and the mirror image map commute as well.

(b) This is really a 2D problem. By inspection, the mirror map is:

(x1, x2, x3) → (−x2,−x1, x3)

or,  y1
y2
y3

 =

 0 −1 0
−1 0 0
0 0 1

  x1
x2
x3


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(c) Functions defined on any set (in our case R3) with values in a vector space (in our case R3)
equipped with pointwise addition and scalar multiplication, form a vector space. One has only
to argue that the linear maps form a subset closed with respect to the vector space operations
and, therefore, form a vector subspace of all functions defined on R3. This follows from the fact
that a linear combination of linear maps is a linear map itself. Dimension of L(X,Y ) is always
equal to the product of dim X = n and dim Y = m (in our case = 9). This follows from the
isomorphism between L(X,Y ) and m× n matrices.

(d) Well, they do not. One possible way to see this, is to develop the matrix representation for a
general mirror map corresponding to an arbitrary plane,

a1x1 + a2x2 + a3x3 = 0, a21 + a22 + a23 = 1 .

Equation for a straight line passing through point (x1, x2, x3) and orthogonal to the plane, is:

y1 = x1 + λa1
y2 = x2 + λa2
y3 = x3 + λa3

The value of parameter λ corresponding to the intersection point with the plane is obtained by
plugging the formulas for yi into the equation of the plane, we get:

λ = −(a1x1 + a2x2 + a3x3) .

The mirror image of point x is obtained now by doubling the value of the parameter,

y1 = x1 − 2(a1x1 + a2x2 + a3x3)a1
y2 = x2 − 2(a1x1 + a2x2 + a3x3)a2
y3 = x3 − 2(a1x1 + a2x2 + a3x3)a3

The corresponding matrix representation is: 1− 2a21 −2a1a2 −2a1a3
−2a1a2 1− 2a22 −2a2a3
−2a1a3 −2a2a3 1− 2a23


Due to the fact that coefficients ai come from a unit sphere in R3, and the nonlinear dependence
of the matrix wrt to the coefficients, it is easy to see that maps of this type do not form a vector
space. More formally, we can argue that such matrices do not form a set closed with respect
to multiplication by a scalar. Indeed, take the first column for our case, i.e. for a1 = a2 =

1/
√
2, a3 = 0, and multiply it by a factor of two to obtain (0,−2, 0)T . Can we find a plane, i.e.

coefficients ai such that the general formula will yield these values, i.e.,

1− 2a21 = 0 − 2a1a2 = 2 − 2a1a3 = 0?

We get a1 = ±1/
√
2, a3 = 0 and then a2 =

−
+

√
2. But ai must represent components of a unit

vector, so the value for a2 is not acceptable.

Area A-CSE
May 2022
w/ solutions



There are many other ways to convince yourself that the mirror images do not form a vector
space.

(e) The notion of the adjoint involves two Hilbert spaces X and Y with inner products (·, ·)X and
(·, ·)Y . Given a linear map A : X → Y , we define the adjoint map A∗ : Y → X by:

A∗ = R−1
X ATRY

where A : Y ∗ → X∗ is the transpose of A, and RX , RY are Riesz maps for X and Y , resp.
Equivalently,

(Ax, y)Y = (x,A∗y)X x ∈ X, y ∈ Y .

(f) Nothing to compute. The matrix is symmetric so the operator is self-adjoint, i.e. A∗ = A.

(g) Matrix A is orthonormal if A−1 = AT .

(h) Yes, it is.
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2. Compute inverse Laplace transform of function

f(s) =
1

s− a
a > 0 .

(a) State the Residue Theorem (5 points)

(b) State the Lebesgue Dominated Convergence Theorem (5 points)

(c) Use the theorems to provide all necessary details. (10 points)

Solution:

(a) See the lecture notes.

(b) See the book.

(c) The inverse Laplace of transform of f(s) is:

1

2πi

ˆ γ+i∞

γ−i∞

est

s− a
ds .

Use the integration contour shown in Fig. 1. The integrand has a single simple pole at s = a.
The integral over the closed contour,

1

2πi

ˆ
est

s− a
ds = Resa = lim

s→a
est = eat .

The integral over vertical part c converges to the integral in the inverse Laplace transform as
R → ∞. We need to demonstrate that the integrals over parts c1, c2, cR vanish in the limit. The

c

R

c
1

c
2

Re s

Im s

γ

a

R

c

Figure 1: Integration contour.

parametrization for c1 is:

z = (γ − ξ,R), ξ ∈ (0, γ − a) dz = −dξ ,
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and the integral over c1 is estimated as follows:

|
ˆ
c1

est

s− a
ds| = | −

ˆ γ−ξ

0

e(γ−ξ)teiRt

z − a
dξ| ≤ eγt

R

ˆ γ−ξ

0
dξ → 0 as R → ∞ .

By the same argument, intgeral over c2 converges to zero as well. The parametrization for the
circular part cR is:

z = (a−R sin θ,R cos θ), θ ∈ (0, π) dz = Rdθ .

The integral over cR is estimates as follows,

|
ˆ
cR

est

s− a
ds| ≤

ˆ π

0

e(a−R sin θ)t

R
Rdθ = eat

ˆ π

0
e−R sin θt dθ .

As the integrand converges a.e. pointwise to zero, and it has an integrable upper bound (a
constant), the Lebesgue Theorem implies that the integral converges to zero.
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3. Consider an initial-value problem:


q ∈ C([0, T ]) ∩ C1(0, T )

q̇ = q2

t−2

q(0) = 1

(a) Solve the problem by elementary means. (5 points)

(b) State (precisely) the Contractive Map Theorem. (2 points)

(c) Use the theorem todetermine a concrete value of T for which the problem has a unique solution.
Compare with (a). (13 points)

Solution:

(a) Use separation of variables:

dq

q2
=

dt

t− 2
⇒ −1

q
|q(t)1 = ln |t− 2||t0 .

We obtain:
q(t) = (ln 2 + 1− ln |t− 2|)−1 .

(b) See the book.

(c) The problem is equivalent to the integral equation:

q(t) = 1 +

ˆ t

0

q2(s)

s− 2
ds .

Consider the Chebyshev space C([0, T ]) where T is to be determined. We need to identify a
subset B ⊂ C([0, T ]) such that the nonlinear map

A : B → B (Aq)(t) = 1 +

ˆ t

0

q2(s)

s− 2
ds

is, first of all, well-defined. As (Aq)(0) = 1, it is natural to define the set as

B := {q ∈ C([0, T ]) : |q(t)− 1| ≤ 1 t ∈ [0, T ]} .

As a closed subset of a complete space, set B is complete as well. Constant 1 used in the bound
is somehow arbitrary.

Step 1:We first determine T that guarantees that A maps set B into itself. First of all, if the
integrand is bounded then Aq is Lipschitz continuous as,

|(Aq)(t2)− (Aq)(t1)| ≤
ˆ t2

t1

|q
2(s)

s− 2
|︸ ︷︷ ︸

≤C

ds ≤ C(t2 − t1) .
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We now estimate,

|(Aq)(t)− 1| = |
ˆ t

0

q2(s)

s− 2
ds| ≤

ˆ t

0

q2(t)

|s− 2|
ds ≤

ˆ t

0

4

|s− 2|
ds ≤ 4T

provided

1

|s− 2|
≤ 1 ⇔ |s− 2| ≥ 1 ⇔ s− 2 ≥ 1 or s− 2 ≤ −1 ⇔ s ≥ 3 or s ≤ 1 ,

i.e., we assume T ≤ 1. The map is then well-defined if 4T ≤ 1, i.e., T ≤ 1
4 .

Step 2: We check, under what condition on T , map A is contractive. We have,

|(Aq1)(t)− (Aq2)(t)| ≤
ˆ t

0

|(q1(s))2 − (q2(s))
2|

|s− 2|
ds

=

ˆ t

0

|(q1(s)− q2(s))(q1(s) + q2(s))|
|s− 2|

ds

≤ T4 max
t∈[0,T ]

|q1(t)− q2(t)| .

The map is thus a contraction if 4T < 1, i.e. T < 1
4 . In cocnlusion, for any T < 1

4 , map
A : B → B is a well-defined contraction and, by the Banach Contractive Map Theorem, the
integral equation has a unique solution.

Comparing with solution from (a), we see that our estimate is quite conservative. The solution
exists for T < 2 + e, it blows up at T = 2 + e.
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4. Separation of variables. Solve the Laplace equation in a circular domain with a Dirichlet BC:{
−∆u = 0 r < 2

u = cos(2θ) r = 2, θ ∈ [0, 2π)

Explain precisely the relation with Sturm-Liouville Theorem and deliver the formula for the final
solution. (20 points)

Solution:
−∆u = −1

r

∂

∂r
(r
∂u

∂r
)− 1

r2
∂2u

∂θ2
= 0 .

Assuming u = R(r)Θ(θ), and separating variables, we get:

−Θ′′

Θ
= r(rR′)′ = λ .

The operator in θ, accompanied with periodic BCs:

Θ(0) = Θ(2π) Θ′(0) = Θ′(2π) ,

is self-adjoint and semi-positive definite, so we can assume λ = k2, k ≥ 0. Solution of the Sturm-
Liouville problem in θ leads to:

Θ =

{
A k = 0
A cos kθ +B sin kθ k > 0 .

In order to satisfy the periodic BCs, positive k’s must be integers. The corresponding solutions R(r)

are:

R(r) =

{
C ln r +D k = 0
Cr−k +Drk k > 0 .

Functions ln r and r−k are singular at zero and are eliminated. Using the superposition, we get the
general solution in the form:

u = A0 +
∞∑
k=1

rk(Ak cos kθ +Bk sin kθ) .

By the Sturm-Liouville Theorem, functions 1, cos kθ, sin kθ provide an L2-orthogonal basis in θ. As
the BC data: cos 2θ is just one of them, the final solution will reduce to the single term:

u =
1

4
r2 cos 2θ .
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5. Calculus of variations.

Consider the Euler-Bernoulli beam problem shown in Fig. 2. The elastic energy of the beam is given
by:

1

2

ˆ l

0
EI(w′′)2 dx

where EI is the stiffness of the beam. Write down the work of the external forces, and the total
potential energy functional. Specify the set (space) of kinematically admissble displacements, i.e.,
formulate the essential BCs, and write down the energy minimization problem. Write down then
(derive ?) the corresponding variational formulation (Principle of Virtual Work). Use integration
by parts and the Fourier argument to derive the corresponding E-L equation, and natural boundary
conditions.

M

q(x)

x

w(x)

l

Figure 2: A beam problem. The beam is fixed at x = 0 and free supported at x = l, subjected to a distributed
load with intensity q = q(x), and a concentrated moment M at x = l.

(20 points)

Solution: The total potential energy functional is:

J(w) =
1

2

ˆ l

0
EI(w′′)2 dx− (

ˆ l

0
qw dx+Mw′(l))︸ ︷︷ ︸

work of external forces

.

The space of kinematically admissible displacements involves energy setting and essential BCs:

V := {w ∈ H2(0, l) : w(0) = w′(0) = w(l) = 0} .

The minimization problem reads:  Find w ∈ V such that:

J(w) = min
z∈V

J(z) .

The corresponding variational formulation is:
Find w ∈ V such that:

EI

ˆ l

0
w′′v′′ dx =

ˆ l

0
qv dx+Mv′(l) ∀v ∈ V .
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Integrating twice by parts, we obtain:

EI

ˆ l

0
w′′′′v dx− EIw′′′v|l0 + EIw′′v′|l0 =

ˆ l

0
qv dx+Mv′(l) ∀v ∈ V .

Taking into account the BCs for test function v, we have:

EI

ˆ l

0
w′′′′v dx+ EIw′′(l)v′(l) =

ˆ l

0
qv dx+Mv′(l) ∀v ∈ V .

Fourier argument:

Step 1: Use v ∈ V that satisfy an additional BC: v′′(l) = 0 and use Fourier Lemma to obtain the E-L
equation:

EIw′′′′ = q .

Step 2: The variational equation reduces then to:

EIw′′(l)v′(l) = Mv′(l) ∀v ∈ V .

This yields the natural BC:
EIw′′(l) = M .
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CSEM Area A-CSE Preliminary Exam 2023

1. A linear algebra “sanity check”.

Consider R3. Let A be the rotation about the x2 axis with an angle of rotation θ > 0, see Fig. 1.

Ax

x
1

x
2

x
3

θ

x

Figure 1: Rotation about x2 axis.

(a) Is A a linear map ? Explain.

(b) Write down an explicit formula for A as a function from R3 into itself.

(c) Write down the matrix representation for map A in the canonical basis.

(d) Explain why all linear maps from R3 into itself - L(R3,R3), form a vector space. What is the
dimension of the space ?

(e) Do the rotations around the x2 axis with an arbitrary angle of rotation θ, form a vector subspace
of L(R3,R3)? Explain your answer. If yes, what is the dimension of this subspace ?

(f) Define adjoint for a linear operator in a general Hilbert setting.

(g) Compute the adjoint of map A with respect to the canonical inner product in R3. Is A a self-
adjoint map ?

(h) Define an orthonormal matrix.

(i) Is matrix representation of map A an orthonormal matrix ? Explain, why ?

(20 points)

EXAM #____CSEM Area A-CSE 
May 2023



(20 points)

Answers:

(a) Yes, it is. Rotation A and multiplication by a number, commute. Similarly, vector addition and
rotation A commute as well.

(b) Using linearity of R helps to derive the explicit formula for R,

Ax = A(x1e1 + x2e2 + x3e3)

= x1Ae1 + x2Ae2 + x3Ae3 = x1(cos θ e1 − sin θ e3) + x2e2 + x3(sin θ e1 + cos θ e3)

= (cos θ x1 + sin θ x3)e1 + x2e2 + (− sin θ x1 + cos θ x3)e3 .

In other words,

A : (x1, x2, x3) → (cos θ x1 + sin θ x3, x2,− sin θ x1 + cos θ x3) .

(c) Here it is:

A =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 .

(d) Functions defined on any set (in our case R3) with values in a vector space (in our case R3)
equipped with pointwise addition and scalar multiplication, form a vector space. One has only
to argue that the linear maps form a subset closed with respect to the vector space operations
and, therefore, form a vector subspace of all functions defined on R3. This follows from the fact
that a linear combination of linear maps is a linear map itself. Dimension of L(X,Y ) is always
equal to the product of dim X = n and dim Y = m (in our case = 9). This follows from the
isomorphism between L(X,Y ) and m× n matrices.

(e) Well, they do not. Composition of two such rotations is a rotation but the algebraic sum of two
rotations is not a rotation. One way to see it is to notice that the rotation preserves length (is
an isometry), i.e. ∥Rx∥ = ∥x|, where ∥ · ∥ denotes the Euclidean norm of x. But the sum of
two rotations does not and, therefore, it cannot be a rotation. It is worth mentioning though that
rotations about infinitesimally small angles:

Rx = (x1 + θx3, x2,−θx1 + x3) (cos θ ≈ 1, sin θ ≈ θ) ,

do form a one-dimensional linear subspace.

(f) The notion of the adjoint involves two Hilbert spaces X and Y with inner products (·, ·)X and
(·, ·)Y . Given a linear map A : X → Y , we define the adjoint map A∗ : Y → X by:

A∗ = R−1
X ATRY

where A : Y ∗ → X∗ is the transpose of A, and RX , RY are Riesz maps for X and Y , resp.
Equivalently,

(Ax, y)Y = (x,A∗y)X x ∈ X, y ∈ Y .



(g) In the canonical basis, the matrix representation of A∗ is the transpose of matrix representation
of A, i.e.

A∗ =

 cos θ 0 − sin θ
0 1 0

− sin θ 0 cos θ

 .

As the two matrices are different, the operator is not self-adjoint.

(h) Matrix A is orthonormal if A−1 = AT .

(i) Yes, it is. The inverse of rotation by angle θ is the rotation by angle −θ. Its matrix representation
is the transpose of the original matrix. In other words, A−1 = A∗.



2. Consider an initial-value problem:


q ∈ C([0, T ]) ∩ C1(0, T )

q̇ = q
(t−1)2

q(0) = 1

(a) Solve the problem by elementary means. (5 points)

(b) State (precisely) the Contractive Map Theorem. (2 points)

(c) Use the theorem to determine a concrete value of T for which the problem has a unique solution.
Compare with (a). (13 points)

Solution:

(a) Use separation of variables:

dq

q
=

dt

(t− 1)2
⇒ ln |q|

∣∣q(t)
1

= −(t− 1)−1
∣∣t
0
.

We obtain:

|q(t)| = exp(−(t− 1)−1 − 1) ⇒ q(t) = ± exp(−(t− 1)−1 − 1) .

As q(0) = 1, we can eliminate the negative branch, and

q(t) = exp(−(t− 1)−1 − 1) .

Note that q(t) → ∞ as t → 1−.

(b) See the book.

(c) The problem is equivalent to the integral equation:

q(t) = 1 +

ˆ t

0

q(s)

(s− 1)2
ds .

Consider the Chebyshev space C([0, T ]) where T is to be determined. We need to identify a
subset B ⊂ C([0, T ]) such that the nonlinear map

A : B → B (Aq)(t) = 1 +

ˆ t

0

q(s)

(s− 1)2
ds

is, first of all, well-defined. As (Aq)(0) = 1, it is natural to define the set as,

B := {q ∈ C([0, T ]) : |q(t)− 1| ≤ 1 t ∈ [0, T ]} .

As a closed subset of a complete space, set B is complete as well. Constant 1 used in the bound
is somehow arbitrary.



Step 1:We first determine T that guarantees that A maps set B into itself. First of all, if the
integrand is bounded then Aq is Lipschitz continuous1 as, for t1 < t2,

|(Aq)(t2)− (Aq)(t1)| ≤
ˆ t2

t1

| q(s)

(s− 1)2
|︸ ︷︷ ︸

≤C

ds ≤ C(t2 − t1) .

We now estimate,

|(Aq)(t)− 1| = |
ˆ t

0

q(s)

(s− 1)2
ds| ≤

ˆ t

0

|q(s)|
(s− 1)2

ds

≤ 2

ˆ t

0

1

(s− 1)2
ds (|q(s)| ≤ |q(s)− 1|+ 1 ≤ 2)

= −2(s− 1)−1
∣∣t
0
= 2

[
1

1− t
− 1

]
.

Requesting,

2

[
1

1− t
− 1

]
≤ 1

we obtain: t ≤ 1
3 .

Step 2: We check, under what condition on T , map A is contractive. We have,

|(Aq1)(t)− (Aq2)(t)| ≤
ˆ t

0

|q1(s)− q2(s)|
|(s− 12|

ds

=

ˆ t

0

ds

|(s− 1)|
ds︸ ︷︷ ︸

= 1
1−t

−1

max
t∈[0,T ]

|q1(t)− q2(t)| .

The map is thus a contraction if 1
1−t − 1 < 1 which gives t < 1

2 . In conclusion, for any T ≤ 1
3 ,

map A : B → B is a well-defined contraction and, by the Banach Contractive Map Theorem,
the integral equation has a unique solution.

Comparing with solution from (a), we see that our estimate is quite conservative. The solution
exists for T < 1, it blows up at T = 1.

1And, therefore, continuous.



3. Metric spaces.

(a) Explain the difference between two equivalent metrics and topologically equivalent metrics. (5
points)

(b) Let (X, d) be an arbitrary metric space. Prove that function

ρ(x, y) :=
d(x, y)

1 + d(x, y)

is also a metric on space X . (10 points)

(c) Are the two metrics (in general) equivalent ? topogically equivalent ? (5 points)

Solution:

(a) See the book.

(b) See the book.

(c) In general, the two metrics cannot be equivalent. The second metric is bounded (by one), the
first might not be bounded at all. But they are topologically equivalent, i.e., the corresponding
bases of neighbohoods (the balls) are equivalent. Indeed, let

Bd(x, ϵ) := {y ∈ X : d(x, y) < ϵ}, Bρ(x, ϵ) := {y ∈ X : ρ(x, y) < ϵ} .

Since
d(x, y) < ϵ ⇒ ρ(x, y) < d(x, y) < ϵ .

we have,
Bd(x, ϵ) ⊂ Bρ(x, ϵ) .

Similarly, for an arbitrary ϵ > 0, and ϵ1 =
ϵ

1+ϵ ,

Bρ(x, ϵ1) ⊂ Bd(x, ϵ) .

Indeed,

ρ =
d

1 + d
< ϵ1 ⇔ d <

ϵ1
1− ϵ1

= ϵ .
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Important: In order to get full grades, for every question, you need to provide the details of your work
on how to get to a solution or the end of the proof.

Problem 1 (SVD: 10 points). Consider A : U = Span{1, x} ⊂ L2(−1, 1) 7→ R2 such that the map A defined
as

f (x) ∈ U 7→ A f =

 ∫ 1
−1 f (x) dx∫ 1

−1(2x + 1) f (x) dx


Find the singular triplets of A .

You may need the following two eigenvalue decompositions:[
4 4
4 52/9

]
=

[
−0.78 0.62
0.62 0.78

] [
0.79 0

0 8.98

] [
−0.78 0.62
0.62 0.78

]
,

and [
8 8/3

8/3 16/9

]
=

[
0.34 −0.93
−0.93 −0.34

] [
0.79 0

0 8.98

] [
0.34 −0.93
−0.93 −0.34

]
.

Solution 1. This is a simplified version of a homework. We solve the problem in a couple of simple steps:

• The matrix representation A of the operator A in the orthogonormal bases of U and R2 is[
2 0
2 4/3

]
.

• Since AT A =
[

8 8/3
8/3 16/9

]
and AAT =

[
4 4
4 52/9

]
, the SVD of A is thus given as

A =
[
−0.93 0.34
−0.34 −0.93

] [
2.99 0

0 0.89

] [
0.62 0.78
−0.78 0.62

]
The singular triplets of A are thus {

2.99, 0.62 + 0.78x,
[
−0.93
−0.34

]}
and {

0.89,−0.78 + 0.62x,
[

0.34
−0.93

]}

Problem 2 (Optimization: 10 points). Consider the following optimization problem

min
x∈Rn

xT Ax

subject to
∥x∥ = 1,

where A ∈ Rn×n is a symmetric matrix, and ∥·∥ is the standard Euclidean norm in Rn. What is the optimal
solution (derive and interpret it)?



3

Solution 2. The Lagrangian
L (x, λ) = xT Ax − λ

(
xT x − 1

)
and thus the first order optimality condition gives

Ax = λx,

which implies
xT Ax = λ,

and thus the optimal solution is the eigenvector of A corresponding to the smallest eigenvalue.

Problem 3 (PDE: 10 points). Consider the following "PDE" in one dimension

−
d2u
dx2 − αu = f in (−1, 1) ,

u(−1) = u(1) = 0,

where α is a positive constant.

Choose (with reasoning why) an appropriate α so that (meaning prove that) with that appropriate value of
α there exists a unique solution residing in H1

0 :=
{
v ∈ H1 (−1, 1) : v(−1) = v(1) = 0

}
to the problem for any

f ∈ L2 (−1, 1) and that the unique solution u depends continuously on f .

You may need the following inequality ∫ 1

−1

∣∣∣∣∣du
dx

∣∣∣∣∣2 dx ≥
1
4

∫ 1

−1
|u|2 dx

Solution 3. For any v ∈ H1
0 , and from the the bilinear form of the weak formulation we have: for any

0 < ε < 1∥∥∥∥∥du
dx

∥∥∥∥∥2

L2
− α ∥u∥2L2 ≥ ε

∥∥∥∥∥du
dx

∥∥∥∥∥2

L2
+

(
1 − ε

4
− α

)
∥u∥2L2 ≥

ε

2

∥∥∥∥∥du
dx

∥∥∥∥∥2

L2
+
ε

8
∥u∥2L2 +

(
1 − ε

4
− α

)
∥u∥2L2

≥
ε

8
∥u∥2H1 +

(
1 − ε

4
− α

)
∥u∥2L2 ,

where we have used the inequality in the hint (Poincare-Friedrichs) in the second inequality.

Thus, picking any value of 0 < ε < 1 and setting α = 1−ε
4 will work. For example, taking ε = 1/2, and

then taking α = 1/8 will ensure the coercivity with coerivity constant 1/16, and the problem is well-posed by
Lax-Milgram.
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